Bearing Fault Classification Based on Envelope Analysis and Artificial Neural Network

Toumi Yassine, Lachenani Sidahmed, Ould Zmirli Mohamed
{"title":"Bearing Fault Classification Based on Envelope Analysis and Artificial Neural Network","authors":"Toumi Yassine, Lachenani Sidahmed, Ould Zmirli Mohamed","doi":"10.1109/ICAEE47123.2019.9015123","DOIUrl":null,"url":null,"abstract":"Bearings are among the most stressed components of industrial machines and represent a frequent source of failure. The diagnosis of these defaults is very important in the domain of predictive maintenance. In this paper, kurtogram technique is applied as an alternative method to determine the optimal band-pass filter characteristics used for envelope analysis. The signal envelope obtained by Hilbert transform and the FFT transform allow the features extraction. Then, an artificial neural network has been used to classify fault type of the rolling element.","PeriodicalId":197612,"journal":{"name":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE47123.2019.9015123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bearings are among the most stressed components of industrial machines and represent a frequent source of failure. The diagnosis of these defaults is very important in the domain of predictive maintenance. In this paper, kurtogram technique is applied as an alternative method to determine the optimal band-pass filter characteristics used for envelope analysis. The signal envelope obtained by Hilbert transform and the FFT transform allow the features extraction. Then, an artificial neural network has been used to classify fault type of the rolling element.
基于包络分析和人工神经网络的轴承故障分类
轴承是工业机械中受力最大的部件之一,也是故障的常见来源。这些故障的诊断在预测性维护领域非常重要。本文将峰图技术作为一种替代方法来确定用于包络分析的最佳带通滤波器特性。希尔伯特变换和FFT变换得到的信号包络可以进行特征提取。然后,利用人工神经网络对滚动体的故障类型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信