{"title":"On-Wafer Power Measurements","authors":"D. Dawson, M. Salib","doi":"10.1109/ARFTG.1989.323959","DOIUrl":null,"url":null,"abstract":"map of Figure 1, 41 d i e ou t of a poss ib l e 122 d i e had g r e a t e r than 32 dBm o f output power. and the d i e s i t e s with \"zeros\" are d i e t h a t were DC bad. The d e f i n i t i o n of DC bad was any d i e t h a t d id not p inchoff . For example, a d i e wi th a shor t ed ga te has high d r a i n cu r ren t t h a t remains \"s tuck\" h igh as V,, i s ramped from zero t o a lower l i m i t such a s -5V. A device with a ga t e vo id (open ga te ) has a d r a i n cu r ren t t h a t a l s o remains h igh as V,, is ramped more.negat ive. with \"zeros\" then a r e d i e t h a t are DC bad, and t i m e w a s n o t spent on RF t e s t i n g . A wafer with 35% y i e l d the re fo re only has RF t e s t t i m e spent on 35% of the d i e , and the f a s t e r DC \"screening\" i s spent on 65% of the d i e . Figure 2 shows the average y i e l d of devices measured over the l a s t two yea r s . I f wafers t h a t made i t t o t es t a r e the b a s i s of y i e l d , t he average y i e l d was 23%; i f the wafers t h a t s t a r t e d processing a r e the b a s i s of y i e l d , the average y i e l d was 16%. The da ta of Figure 2 is from 700 devices t h a t w e r e power t e s t e d , and the l a r g e amount o f da t a shows t h a t power measurements a t wafer level a r e poss ib l e . Wafer maps of output power have been obtained ( see Figure 1). On the wafer","PeriodicalId":153615,"journal":{"name":"34th ARFTG Conference Digest","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th ARFTG Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG.1989.323959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
map of Figure 1, 41 d i e ou t of a poss ib l e 122 d i e had g r e a t e r than 32 dBm o f output power. and the d i e s i t e s with "zeros" are d i e t h a t were DC bad. The d e f i n i t i o n of DC bad was any d i e t h a t d id not p inchoff . For example, a d i e wi th a shor t ed ga te has high d r a i n cu r ren t t h a t remains "s tuck" h igh as V,, i s ramped from zero t o a lower l i m i t such a s -5V. A device with a ga t e vo id (open ga te ) has a d r a i n cu r ren t t h a t a l s o remains h igh as V,, is ramped more.negat ive. with "zeros" then a r e d i e t h a t are DC bad, and t i m e w a s n o t spent on RF t e s t i n g . A wafer with 35% y i e l d the re fo re only has RF t e s t t i m e spent on 35% of the d i e , and the f a s t e r DC "screening" i s spent on 65% of the d i e . Figure 2 shows the average y i e l d of devices measured over the l a s t two yea r s . I f wafers t h a t made i t t o t es t a r e the b a s i s of y i e l d , t he average y i e l d was 23%; i f the wafers t h a t s t a r t e d processing a r e the b a s i s of y i e l d , the average y i e l d was 16%. The da ta of Figure 2 is from 700 devices t h a t w e r e power t e s t e d , and the l a r g e amount o f da t a shows t h a t power measurements a t wafer level a r e poss ib l e . Wafer maps of output power have been obtained ( see Figure 1). On the wafer
地图的图1中,41 d i e ou t的彼得·ib l e 122 d e比32 g r e t e r o f dBm的输出功率。而带“0”的“d”是“d”,带“0”的“d”是“d”,带“0”的“d”是“DC”。如果它的值是0,它的值是0,它的值是0,它的值是0,它的值是0。例如,一个具有短电压的电压,其高电压为1v,当电压为1v时,它保持“10v”的高电压,它从零上升到低电压1v,即-5V。设备的ga t e vo id(开放ga te) d r任我n铜r t t h t l s o仍然本,V,,是增加更多。negat ive。加上“0”,然后是“0”,然后是“0”,然后是“0”,然后是“0”,然后是“0”,然后是“0”,然后是“0”,然后是“0”。一个晶圆有35%的电流,而另一个晶圆只有35%的电流,而另一个晶圆只有35%的电流,而另一个晶圆只有35%的电流,而另一个晶圆则有65%的电流用于直流“筛选”。图2显示了在过去两年中测量到的设备的平均功耗。如果有一半的人成功了,一半的人成功了,一半的人成功了,一半的人成功了,一半的人成功了,一半的人成功了,23%的人成功了;如果晶圆片在加工过程中所占的比例比在加工过程中所占的比例要高,那么在加工过程中所占的比例平均为16%。图2的数据来自于700个器件到该器件的功率测量值,图2的数据来自于该器件到该器件的功率测量值,图2的数据来自于该器件到该器件的功率测量值,图2的数据来自于该器件到该器件的功率测量值。已获得输出功率的晶圆图(见图1)