{"title":"A 9.1 mW inductive displacement-to-digital converter with 1.85 nm resolution","authors":"V. Chaturvedi, J. Vogel, K. Makinwa, S. Nihtianov","doi":"10.23919/VLSIC.2017.8008556","DOIUrl":null,"url":null,"abstract":"A displacement-to-digital converter (DDC) based on inductive (eddy-current) sensor is presented. The sensor is embedded in a self-oscillating front-end, whose 145MHz output is then digitized by a ratiometric ΔΣ ADC. Over a 10μm range, the DDC achieves 1.85nm resolution (1.02 pH), in a 2kHz bandwidth. It draws 9.1mW from a 1.8 V supply making it the most energy-efficient ECS interface ever reported.","PeriodicalId":176340,"journal":{"name":"2017 Symposium on VLSI Circuits","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A displacement-to-digital converter (DDC) based on inductive (eddy-current) sensor is presented. The sensor is embedded in a self-oscillating front-end, whose 145MHz output is then digitized by a ratiometric ΔΣ ADC. Over a 10μm range, the DDC achieves 1.85nm resolution (1.02 pH), in a 2kHz bandwidth. It draws 9.1mW from a 1.8 V supply making it the most energy-efficient ECS interface ever reported.