Sentence Classification with Deep Learning Method For Virtual Assistant Applications

Gurur Pi̇rana, A. Sertbas, T. Ensari
{"title":"Sentence Classification with Deep Learning Method For Virtual Assistant Applications","authors":"Gurur Pi̇rana, A. Sertbas, T. Ensari","doi":"10.1109/ISMSIT.2019.8932888","DOIUrl":null,"url":null,"abstract":"This paper investigates three different deep learning method performance for virtual assistant applications about sentence classification. The classification is based in Turkish texts. For three different model we demonstrate the performance of each model. We investigate Convolutional Neural Network (CNN), Region Convolutional Neural Network (RCNN) and Long Short Term Memory (LSTM) deep learning methods and compare the accuracy results of the related models. Furthermore, we aim to select the best classification model for our dataset.We have researched effect of the hyper parameters to model accuracy and we used best hyper parameters for each methods and we aimed to gain best performance for our dataset.This resarch helps applications like virtual assistant with classification of the sentence and giving the output of the class. The output of classification could be a text, image or document. Benefit of this comparsion of the methods we realized that instance number increses the model accuracy. The best method for our dataset was the Convolutional Neural Networks (CNN) with the %87.3 accuracy.","PeriodicalId":169791,"journal":{"name":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT.2019.8932888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates three different deep learning method performance for virtual assistant applications about sentence classification. The classification is based in Turkish texts. For three different model we demonstrate the performance of each model. We investigate Convolutional Neural Network (CNN), Region Convolutional Neural Network (RCNN) and Long Short Term Memory (LSTM) deep learning methods and compare the accuracy results of the related models. Furthermore, we aim to select the best classification model for our dataset.We have researched effect of the hyper parameters to model accuracy and we used best hyper parameters for each methods and we aimed to gain best performance for our dataset.This resarch helps applications like virtual assistant with classification of the sentence and giving the output of the class. The output of classification could be a text, image or document. Benefit of this comparsion of the methods we realized that instance number increses the model accuracy. The best method for our dataset was the Convolutional Neural Networks (CNN) with the %87.3 accuracy.
基于深度学习方法的句子分类虚拟助手应用
本文研究了三种不同的深度学习方法在句子分类虚拟助手应用中的性能。分类是基于土耳其文本。对于三个不同的模型,我们演示了每个模型的性能。我们研究了卷积神经网络(CNN)、区域卷积神经网络(RCNN)和长短期记忆(LSTM)深度学习方法,并比较了相关模型的准确率结果。此外,我们的目标是为我们的数据集选择最佳的分类模型。我们研究了超参数对模型精度的影响,并对每种方法使用最佳的超参数,以获得最佳的数据集性能。这项研究有助于虚拟助手等应用程序对句子进行分类并给出分类的输出。分类的输出可以是文本、图像或文档。通过对这些方法的比较,我们发现实例数增加了模型的精度。对于我们的数据集,最好的方法是卷积神经网络(CNN),准确率为%87.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信