Hardware-Aware Quantization for Multiplierless Neural Network Controllers

Tobias Habermann, Jonas Kühle, M. Kumm, Anastasia Volkova
{"title":"Hardware-Aware Quantization for Multiplierless Neural Network Controllers","authors":"Tobias Habermann, Jonas Kühle, M. Kumm, Anastasia Volkova","doi":"10.1109/APCCAS55924.2022.10090271","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been successfully applied to the approximation of non-linear control systems. These DNNs, deployed in safety-critical embedded systems, are relatively small but require a high throughput. Our goal is to perform a coefficient quantization to reduce the arithmetic complexity while maintaining an inference with high numerical accuracy. The key idea is to target multiplierless parallel architectures, where constant multiplications are replaced by bit-shifts and additions. We propose an adder-aware training that finds the quantized fixed-point coefficients minimizing the number of adders and thus improving the area, latency and power. With this approach, we demonstrate that an automatic cruise control floating-point DNN can be retrained to have only power-of-two coefficients, while maintaining a similar mean squared error (MSE) and formally satisfying a safety check. We provide a push-button training and implementation framework, automatically generating the VHDL code.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"93 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Deep neural networks (DNNs) have been successfully applied to the approximation of non-linear control systems. These DNNs, deployed in safety-critical embedded systems, are relatively small but require a high throughput. Our goal is to perform a coefficient quantization to reduce the arithmetic complexity while maintaining an inference with high numerical accuracy. The key idea is to target multiplierless parallel architectures, where constant multiplications are replaced by bit-shifts and additions. We propose an adder-aware training that finds the quantized fixed-point coefficients minimizing the number of adders and thus improving the area, latency and power. With this approach, we demonstrate that an automatic cruise control floating-point DNN can be retrained to have only power-of-two coefficients, while maintaining a similar mean squared error (MSE) and formally satisfying a safety check. We provide a push-button training and implementation framework, automatically generating the VHDL code.
无乘法器神经网络控制器的硬件感知量化
深度神经网络(dnn)已成功地应用于非线性控制系统的逼近。这些dnn部署在安全关键型嵌入式系统中,相对较小,但需要高吞吐量。我们的目标是执行系数量化以降低算术复杂度,同时保持高数值精度的推理。关键思想是针对无乘数并行架构,其中常数乘法被位移位和加法取代。我们提出了一种加法器感知训练,它可以找到量化的不动点系数,从而减少加法器的数量,从而提高面积,延迟和功率。通过这种方法,我们证明了自动巡航控制浮点深度神经网络可以被重新训练为只有2次幂系数,同时保持相似的均方误差(MSE)并正式满足安全检查。我们提供了一个按钮训练和实现框架,自动生成VHDL代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信