A Rapid Registration Framework for Medical Images

Anrong Yang, Lingqi Meng, Jianzhen Luo, Cai-xing Lin
{"title":"A Rapid Registration Framework for Medical Images","authors":"Anrong Yang, Lingqi Meng, Jianzhen Luo, Cai-xing Lin","doi":"10.1109/ICIG.2007.30","DOIUrl":null,"url":null,"abstract":"This paper presents a general framework for registration of medical images. Comparing with other registration frameworks, this framework is quite simpler in structure but much quicker in image processing and application development. The input data to the registration process are two images: one fixed image and one moving image. The output data are one result image represents the differences between the fixed image and the moving image after registration. Aside the input and output data, the framework can be separated into three parts: interpolator, measurer and optimizer. Interpolator is used for evaluating moving image intensities at non- grid positions. Measurer provides an appraisal method of how well the fixed image is matched by the transformed moving image. Optimizer can optimize the measure criterion with respect to the transform parameters. These three parts act as different roles in medical images registration and construct a simple, rapid and stable medical images registration framework.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a general framework for registration of medical images. Comparing with other registration frameworks, this framework is quite simpler in structure but much quicker in image processing and application development. The input data to the registration process are two images: one fixed image and one moving image. The output data are one result image represents the differences between the fixed image and the moving image after registration. Aside the input and output data, the framework can be separated into three parts: interpolator, measurer and optimizer. Interpolator is used for evaluating moving image intensities at non- grid positions. Measurer provides an appraisal method of how well the fixed image is matched by the transformed moving image. Optimizer can optimize the measure criterion with respect to the transform parameters. These three parts act as different roles in medical images registration and construct a simple, rapid and stable medical images registration framework.
医学图像快速配准框架
本文提出了医学图像配准的一般框架。与其他配准框架相比,该框架结构简单,但图像处理和应用开发速度快得多。所述配准过程的输入数据为两幅图像:一幅固定图像和一幅运动图像。输出数据是一幅结果图像,表示配准后的固定图像与运动图像之间的差异。除了输入和输出数据,该框架可以分为三个部分:插值器、测量器和优化器。插值器用于评估非网格位置的运动图像强度。测量器提供了一种评价固定图像与变换后的运动图像匹配程度的方法。优化器可以根据变换参数优化测量判据。这三个部分在医学图像配准中各自发挥着不同的作用,构建了一个简单、快速、稳定的医学图像配准框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信