Occlusion-Based Approach for Interpretable Semantic Segmentation

Rokas Gipiškis, O. Kurasova
{"title":"Occlusion-Based Approach for Interpretable Semantic Segmentation","authors":"Rokas Gipiškis, O. Kurasova","doi":"10.23919/CISTI58278.2023.10212017","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the application of an occlusion-based approach for the task of interpreting semantic segmentation results. With an increasing deployment of deep learning systems in critical domains, interpretability plays a key role in providing additional information about the model besides the evaluation metric score. An extended modification of occlusion sensitivity allows the generation of saliency maps based on the effect of occlusions on the evaluation metric. Such a perturbation-based post-hoc interpretability method can be used to visualize those image regions that the selected segmentation class is most sensitive to. We observe that, compared to classification cases, the evaluation metric scores for segmentation remain similar to each other even after occlusions. To generate more color intensities in the saliency map, we use normalization and standardization techniques. We also evaluate the results quantitatively using deletion curves.","PeriodicalId":121747,"journal":{"name":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISTI58278.2023.10212017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the application of an occlusion-based approach for the task of interpreting semantic segmentation results. With an increasing deployment of deep learning systems in critical domains, interpretability plays a key role in providing additional information about the model besides the evaluation metric score. An extended modification of occlusion sensitivity allows the generation of saliency maps based on the effect of occlusions on the evaluation metric. Such a perturbation-based post-hoc interpretability method can be used to visualize those image regions that the selected segmentation class is most sensitive to. We observe that, compared to classification cases, the evaluation metric scores for segmentation remain similar to each other even after occlusions. To generate more color intensities in the saliency map, we use normalization and standardization techniques. We also evaluate the results quantitatively using deletion curves.
基于遮挡的可解释语义分割方法
在本文中,我们研究了一种基于闭塞的方法来解释语义分割结果的任务。随着深度学习系统在关键领域的部署越来越多,可解释性在提供除了评估指标分数之外的关于模型的附加信息方面起着关键作用。对遮挡敏感性的扩展修改允许基于遮挡对评估度量的影响生成显著性地图。这种基于扰动的事后可解释性方法可用于可视化所选分割类最敏感的图像区域。我们观察到,与分类案例相比,即使在闭塞之后,分割的评估指标分数仍然彼此相似。为了在显著性图中生成更多的颜色强度,我们使用了规范化和标准化技术。我们还用缺失曲线定量地评价了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信