Automatic Multilevel Thresholding Using Binary Particle Swarm Optimization for Image Segmentation

L. Djerou, N. Khelil, H. Dehimi, M. Batouche
{"title":"Automatic Multilevel Thresholding Using Binary Particle Swarm Optimization for Image Segmentation","authors":"L. Djerou, N. Khelil, H. Dehimi, M. Batouche","doi":"10.1109/SoCPaR.2009.25","DOIUrl":null,"url":null,"abstract":"In this paper an automatic multilevel thresholding approach, based on Binary Particle Swarm Optimization, is proposed. The proposed approach automatically determines the \"optimum\" number of the thresholds and simultaneously searches the optimal thresholds, by optimizing a function which uses the gray level thresholds as parameters. The algorithm starts with large number initial thresholds, then, these thresholds are dynamically refined to improve the value of the objective function. The proposed method is validated by illustrative examples; comparison with the exhaustive search Otsu’s and Kapur’s methods shows its efficiency.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper an automatic multilevel thresholding approach, based on Binary Particle Swarm Optimization, is proposed. The proposed approach automatically determines the "optimum" number of the thresholds and simultaneously searches the optimal thresholds, by optimizing a function which uses the gray level thresholds as parameters. The algorithm starts with large number initial thresholds, then, these thresholds are dynamically refined to improve the value of the objective function. The proposed method is validated by illustrative examples; comparison with the exhaustive search Otsu’s and Kapur’s methods shows its efficiency.
基于二值粒子群优化的自动多级阈值分割
提出了一种基于二元粒子群算法的自动多级阈值分割方法。该方法通过优化以灰度阈值为参数的函数,自动确定阈值的“最优”数量,同时搜索最优阈值。该算法从大量初始阈值开始,然后对这些阈值进行动态细化,以提高目标函数的值。通过算例验证了该方法的有效性;通过与Otsu和Kapur的穷举搜索方法的比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信