Design Trade-offs and Considerations for Improving the PCB Current Carrying Capacity in High Power Density Power Electronics Applications

V. T. Buyukdegirmenci, Omer F. Kozarva, Ozgur C. Milletsever, A. Hava
{"title":"Design Trade-offs and Considerations for Improving the PCB Current Carrying Capacity in High Power Density Power Electronics Applications","authors":"V. T. Buyukdegirmenci, Omer F. Kozarva, Ozgur C. Milletsever, A. Hava","doi":"10.1109/APEC43599.2022.9773486","DOIUrl":null,"url":null,"abstract":"This paper investigates printed circuit board (PCB) design trade-offs and considerations to maximize the current carrying capacity of traces in PCB-based power electronics applications. Many existing designs rely on methodologies through empirical data presented by the outdated IPC-2152 standard. A design methodology to maximize the utilized PCB area and improve thermal performance is introduced. To assess this methodology, lumped parameter (LP) and finite element (FE) models are developed and computational fluid dynamics (CFD) simulations are carried out. Thermal via placement strategies are investigated and maximum allowable power dissipation on the PCB traces is calculated. Simulations and analyses are experimentally validated on a PCB-based 100kW three-phase three-level inverter. The that results show that the thermal and electrical models discussed in this paper have superior accuracy compared to traditional formulations.","PeriodicalId":127006,"journal":{"name":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43599.2022.9773486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates printed circuit board (PCB) design trade-offs and considerations to maximize the current carrying capacity of traces in PCB-based power electronics applications. Many existing designs rely on methodologies through empirical data presented by the outdated IPC-2152 standard. A design methodology to maximize the utilized PCB area and improve thermal performance is introduced. To assess this methodology, lumped parameter (LP) and finite element (FE) models are developed and computational fluid dynamics (CFD) simulations are carried out. Thermal via placement strategies are investigated and maximum allowable power dissipation on the PCB traces is calculated. Simulations and analyses are experimentally validated on a PCB-based 100kW three-phase three-level inverter. The that results show that the thermal and electrical models discussed in this paper have superior accuracy compared to traditional formulations.
提高高功率密度电力电子应用中PCB载流能力的设计权衡与考虑
本文研究了印刷电路板(PCB)设计中的权衡和考虑,以最大限度地提高基于PCB的电力电子应用中走线的载流能力。许多现有的设计依赖于过时的IPC-2152标准提供的经验数据的方法。介绍了一种设计方法,以最大限度地利用PCB面积和提高热性能。为了评估这种方法,建立了集总参数(LP)和有限元(FE)模型,并进行了计算流体动力学(CFD)模拟。研究了热导通放置策略,并计算了PCB走线上的最大允许功耗。仿真和分析在基于pcb的100kW三相三电平逆变器上进行了实验验证。结果表明,本文所讨论的热电模型与传统公式相比具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信