Cross-camera complementary vehicle matching via feature expandsion for video forensics

Chao-Yung Hsu, Chih-Yang Lin, Li-Wei Kang, H. Liao
{"title":"Cross-camera complementary vehicle matching via feature expandsion for video forensics","authors":"Chao-Yung Hsu, Chih-Yang Lin, Li-Wei Kang, H. Liao","doi":"10.1109/ISCE.2013.6570190","DOIUrl":null,"url":null,"abstract":"In this paper, we will investigate a more challenging vehicle matching problem. The problem is formulated as invariant image feature matching among opposite viewpoints of cameras, i.e. complementary object matching. For example, a front vehicle object may be given as a query to retrieve a rear vehicle object of the same vehicle. To solve the complementary object matching, invariant image feature is first extracted based on ASIFT (affine and scale-invariant feature transform) for each detected vehicle in a camera network. Then, the ASIFT feature is expanded via a special vehicle database. As a result, cross-camera vehicle matching with the help of complementary part can be greatly improved. Experimental results demonstrate the effectiveness of the proposed algorithm and the feasibility to video forensics applications.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will investigate a more challenging vehicle matching problem. The problem is formulated as invariant image feature matching among opposite viewpoints of cameras, i.e. complementary object matching. For example, a front vehicle object may be given as a query to retrieve a rear vehicle object of the same vehicle. To solve the complementary object matching, invariant image feature is first extracted based on ASIFT (affine and scale-invariant feature transform) for each detected vehicle in a camera network. Then, the ASIFT feature is expanded via a special vehicle database. As a result, cross-camera vehicle matching with the help of complementary part can be greatly improved. Experimental results demonstrate the effectiveness of the proposed algorithm and the feasibility to video forensics applications.
基于视频取证特征扩展的跨摄像头互补车辆匹配
在本文中,我们将研究一个更具挑战性的车辆匹配问题。将该问题表述为摄像机相对视点之间的不变图像特征匹配,即互补目标匹配。例如,可以将前面的车辆对象作为查询给出,以检索同一车辆的后面的车辆对象。为了解决互补目标匹配问题,首先基于ASIFT(仿射和尺度不变特征变换)对相机网络中每辆被检测车辆提取不变图像特征。然后,通过一个特殊的车辆数据库扩展ASIFT功能。从而大大提高了利用互补部分进行跨摄像头车辆匹配的能力。实验结果证明了该算法的有效性和在视频取证应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信