HkAmsters at CMCL 2022 Shared Task: Predicting Eye-Tracking Data from a Gradient Boosting Framework with Linguistic Features

Lavinia Salicchi, Rong Xiang, Yu-Yin Hsu
{"title":"HkAmsters at CMCL 2022 Shared Task: Predicting Eye-Tracking Data from a Gradient Boosting Framework with Linguistic Features","authors":"Lavinia Salicchi, Rong Xiang, Yu-Yin Hsu","doi":"10.18653/v1/2022.cmcl-1.13","DOIUrl":null,"url":null,"abstract":"Eye movement data are used in psycholinguistic studies to infer information regarding cognitive processes during reading. In this paper, we describe our proposed method for the Shared Task of Cognitive Modeling and Computational Linguistics (CMCL) 2022 - Subtask 1, which involves data from multiple datasets on 6 languages. We compared different regression models using features of the target word and its previous word, and target word surprisal as regression features. Our final system, using a gradient boosting regressor, achieved the lowest mean absolute error (MAE), resulting in the best system of the competition.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.cmcl-1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Eye movement data are used in psycholinguistic studies to infer information regarding cognitive processes during reading. In this paper, we describe our proposed method for the Shared Task of Cognitive Modeling and Computational Linguistics (CMCL) 2022 - Subtask 1, which involves data from multiple datasets on 6 languages. We compared different regression models using features of the target word and its previous word, and target word surprisal as regression features. Our final system, using a gradient boosting regressor, achieved the lowest mean absolute error (MAE), resulting in the best system of the competition.
HkAmsters在CMCL 2022共享任务:用语言特征的梯度提升框架预测眼动追踪数据
眼动数据在心理语言学研究中被用来推断阅读过程中认知过程的信息。在本文中,我们描述了我们为认知建模和计算语言学共享任务(CMCL) 2022 -子任务1提出的方法,该任务涉及来自6种语言的多个数据集的数据。我们使用目标词和前一个词的特征,以及目标词的surprisal作为回归特征,比较了不同的回归模型。我们的最终系统,使用梯度增强回归器,实现了最低的平均绝对误差(MAE),从而成为竞争中的最佳系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信