Robust R-D parameter estimation via closed-form PARAFAC

J. Costa, F. Roemer, M. Weis, M. Haardt
{"title":"Robust R-D parameter estimation via closed-form PARAFAC","authors":"J. Costa, F. Roemer, M. Weis, M. Haardt","doi":"10.1109/WSA.2010.5456382","DOIUrl":null,"url":null,"abstract":"R-dimensional parameter estimation problems are common in a variety of signal processing applications. In order to solve such problems, we propose a robust multidimensional model order selection scheme and a robust multidimensional parameter estimation scheme using the closed-form PARAFAC algorithm, which is a recently proposed way to compute the PARAFAC decomposition based on several simultaneous diagonalizations. In general, R-dimensional (R-D) model order selection (MOS) techniques, e.g., the R-D Exponential Fitting Test (R-D EFT), are designed for multidimensional data by taking into account its multidimensional structure. However, the R-D MOS techniques assume that the data is contaminated by white Gaussian noise. To deal with colored noise, we propose the closed-form PARAFAC based model order selection (CFP-MOS) technique based on multiple estimates of the factor matrices provided as an intermediate step by the closed-form PARAFAC algorithm. Additionally, we propose the closed-form PARAFAC based parameter estimator (CFP-PE), which can be applied to extract spatial frequencies in case of arbitrary array geometries.","PeriodicalId":311394,"journal":{"name":"2010 International ITG Workshop on Smart Antennas (WSA)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International ITG Workshop on Smart Antennas (WSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2010.5456382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

R-dimensional parameter estimation problems are common in a variety of signal processing applications. In order to solve such problems, we propose a robust multidimensional model order selection scheme and a robust multidimensional parameter estimation scheme using the closed-form PARAFAC algorithm, which is a recently proposed way to compute the PARAFAC decomposition based on several simultaneous diagonalizations. In general, R-dimensional (R-D) model order selection (MOS) techniques, e.g., the R-D Exponential Fitting Test (R-D EFT), are designed for multidimensional data by taking into account its multidimensional structure. However, the R-D MOS techniques assume that the data is contaminated by white Gaussian noise. To deal with colored noise, we propose the closed-form PARAFAC based model order selection (CFP-MOS) technique based on multiple estimates of the factor matrices provided as an intermediate step by the closed-form PARAFAC algorithm. Additionally, we propose the closed-form PARAFAC based parameter estimator (CFP-PE), which can be applied to extract spatial frequencies in case of arbitrary array geometries.
基于闭式PARAFAC的鲁棒R-D参数估计
r维参数估计问题在各种信号处理应用中都很常见。为了解决这些问题,我们提出了一种鲁棒的多维模型阶数选择方案和一种鲁棒的多维参数估计方案,该方案是最近提出的一种基于多个同步对角化的PARAFAC分解计算方法。一般来说,r维(R-D)模型顺序选择(MOS)技术,如R-D指数拟合检验(R-D EFT),是针对多维数据设计的,考虑了多维数据的多维结构。然而,R-D MOS技术假设数据受到高斯白噪声的污染。为了处理有色噪声,我们提出了基于封闭形式PARAFAC的模型顺序选择(CFP-MOS)技术,该技术基于封闭形式PARAFAC算法提供的作为中间步骤的因子矩阵的多个估计。此外,我们提出了一种基于PARAFAC的参数估计器(CFP-PE),它可以在任意阵列几何形状的情况下提取空间频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信