A micro-embolic energy detector based on sub-band decomposition

Maroun Geryes, S. Ménigot, Walid Hassan, Ali Mcheick, Marilys Almar, B. Guibert, Corinne Gautier, J. Charara, J. Girault
{"title":"A micro-embolic energy detector based on sub-band decomposition","authors":"Maroun Geryes, S. Ménigot, Walid Hassan, Ali Mcheick, Marilys Almar, B. Guibert, Corinne Gautier, J. Charara, J. Girault","doi":"10.1109/MECBME.2016.7745407","DOIUrl":null,"url":null,"abstract":"Cerebrovascular Accidents can be caused by cerebral emboli blocking brain blood vessels. Analysis of transcranial Doppler signals practically aids the detection of emboli. Signal processing methods have been proposed for emboli detection. In this study, we introduce a new micro-embolic energy detector composed of N detectors associated to N Doppler frequency sub-bands. To test our detectors, we propose a training phase during which we adjust the optimal number of sub-bands and detection thresholds and a testing phase through which we measure performances. Using real signals, we show that in terms of the number of sub-bands, 4 sub-bands provide the highest detection rate and lowest false alarm. Moreover, compared to standard detectors, the 4 sub-band energy detector reduces the false alarm rate from 44% to 36%, increases the detection rate from 66% to 79% and augments the Embolus to Blood Ratio from 24 dB to 40 dB. This new energy detector permits detecting smallest micro-emboli, precursors of coming large emboli with high stroke risks.","PeriodicalId":430369,"journal":{"name":"2016 3rd Middle East Conference on Biomedical Engineering (MECBME)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd Middle East Conference on Biomedical Engineering (MECBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2016.7745407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cerebrovascular Accidents can be caused by cerebral emboli blocking brain blood vessels. Analysis of transcranial Doppler signals practically aids the detection of emboli. Signal processing methods have been proposed for emboli detection. In this study, we introduce a new micro-embolic energy detector composed of N detectors associated to N Doppler frequency sub-bands. To test our detectors, we propose a training phase during which we adjust the optimal number of sub-bands and detection thresholds and a testing phase through which we measure performances. Using real signals, we show that in terms of the number of sub-bands, 4 sub-bands provide the highest detection rate and lowest false alarm. Moreover, compared to standard detectors, the 4 sub-band energy detector reduces the false alarm rate from 44% to 36%, increases the detection rate from 66% to 79% and augments the Embolus to Blood Ratio from 24 dB to 40 dB. This new energy detector permits detecting smallest micro-emboli, precursors of coming large emboli with high stroke risks.
基于子带分解的微栓子能量检测器
脑栓塞阻塞脑血管可引起脑血管意外。经颅多普勒信号的分析有助于栓塞的检测。已经提出了用于栓塞检测的信号处理方法。在这项研究中,我们介绍了一种新的微栓子能量探测器,该探测器由N个探测器组成,并与N个多普勒频率子带相关联。为了测试我们的检测器,我们提出了一个训练阶段,在此期间我们调整子带和检测阈值的最佳数量,以及一个测试阶段,通过该阶段我们测量性能。使用真实信号,我们表明,就子带的数量而言,4个子带提供最高的检测率和最低的虚警。此外,与标准检测器相比,4子带能量检测器将误报警率从44%降低到36%,将检出率从66%提高到79%,并将栓子对血比从24 dB提高到40 dB。这种新的能量检测器允许检测最小的微栓子,这是即将到来的具有高卒中风险的大栓子的前兆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信