G. Tomaka, E. Sheregii, J. Cebulski, W. Ściuk, W. Strupinski, L. Dobrzański
{"title":"Investigation of the strain layers in multiple quantum wells by magnetophonon resonance","authors":"G. Tomaka, E. Sheregii, J. Cebulski, W. Ściuk, W. Strupinski, L. Dobrzański","doi":"10.1117/12.425440","DOIUrl":null,"url":null,"abstract":"Magnetophonon Resonance in parallel transport of three types of Multiple Quantum Wells was studied. They consisted of ten QW of GaAs and ten AlGaAs barriers, and were obtained by the Metal Organic Vapor Deposition an semi-insulating GaAs. The MPR research were performed in pulsed magnetic fields up to 30 T. The transverse magneto resistance was measured between 77K and 340K and the MPR oscillations extracted by subtracting a voltage linear in magnetic field. The oscillating part of magneto resistance (Delta) (rho) xx was recorded. A fine structure of MPR peaks was observed. This effect could be attributed to two phenomena: contribution of barrier phonons and influence of thermostresses.","PeriodicalId":365405,"journal":{"name":"International Conference on Solid State Crystals","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Solid State Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.425440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Magnetophonon Resonance in parallel transport of three types of Multiple Quantum Wells was studied. They consisted of ten QW of GaAs and ten AlGaAs barriers, and were obtained by the Metal Organic Vapor Deposition an semi-insulating GaAs. The MPR research were performed in pulsed magnetic fields up to 30 T. The transverse magneto resistance was measured between 77K and 340K and the MPR oscillations extracted by subtracting a voltage linear in magnetic field. The oscillating part of magneto resistance (Delta) (rho) xx was recorded. A fine structure of MPR peaks was observed. This effect could be attributed to two phenomena: contribution of barrier phonons and influence of thermostresses.