Fibonacci circulants-a new interconnection topology

Yong-Seok Kim
{"title":"Fibonacci circulants-a new interconnection topology","authors":"Yong-Seok Kim","doi":"10.1109/TENCON.1999.818449","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel interconnection network called Fibonacci circulants for large scale parallel processing systems. The FC(f/sub 3m+2/,3) is a regular and vertex transitive (not edge transitive), and has a Hamiltonian cycle. It connects the (3m+2)-th Fibonacci number, f/sub 3m+2/, m/spl ges/0 nodes with 2m links per node. It is an improvement over a comparable hypercube or multiply-twisted cube that the number of nodes with the same diameter and node degree is (2/sup 2m/)/(f/sub 3m+2/)/spl cong/0.85(0.94)/sup m/. And its diameter and maximum node degree are both 2m, that is two-thirds of a comparable Fibonacci cube with f/sub 3m+2/ processing nodes. The FC(f/sub 3m+2/,3) has a simple routing algorithm, and a Fibonacci tree as a spanning tree.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a novel interconnection network called Fibonacci circulants for large scale parallel processing systems. The FC(f/sub 3m+2/,3) is a regular and vertex transitive (not edge transitive), and has a Hamiltonian cycle. It connects the (3m+2)-th Fibonacci number, f/sub 3m+2/, m/spl ges/0 nodes with 2m links per node. It is an improvement over a comparable hypercube or multiply-twisted cube that the number of nodes with the same diameter and node degree is (2/sup 2m/)/(f/sub 3m+2/)/spl cong/0.85(0.94)/sup m/. And its diameter and maximum node degree are both 2m, that is two-thirds of a comparable Fibonacci cube with f/sub 3m+2/ processing nodes. The FC(f/sub 3m+2/,3) has a simple routing algorithm, and a Fibonacci tree as a spanning tree.
斐波那契循环——一种新的互连拓扑
针对大规模并行处理系统,提出了一种新型的斐波那契循环互连网络。FC(f/下标3m+2/,3)是正则的顶点可传递(非边可传递),具有哈密顿循环。它连接了(3m+2)-斐波那契数,f/sub 3m+2/ m/spl /0个节点,每个节点有2m条链路。具有相同直径和节点度的节点数为(2/sup 2m/)/(f/ sup 3m+2/)/spl cong/0.85(0.94)/sup m/,这是相对于类似的超立方体或多重扭曲立方体的改进。其直径和最大节点度均为2m,即f/下标3m+2/处理节点的斐波那契立方的三分之二。FC(f/sub 3m+2/,3)有一个简单的路由算法,用斐波那契树作为生成树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信