{"title":"Classification of diabetes disease using TCM electronic nose signals and ensemble learning","authors":"Qiang Li, Li-sang Liu, Fan Yang, Zhezhou Zheng, Xuejuan Lin, Qingqing Wu","doi":"10.1109/ICCSE.2014.6926513","DOIUrl":null,"url":null,"abstract":"Diabetes is one of the most prevalent diseases in medical field. We propose an ensemble method for diagnosis of diabetes on traditional Chinese medicine electronic nose signals. To evaluate the effectiveness of our method, we carry out the experiments by comparing single classifier with ensemble classifiers based on support vector machine and logistic classification model. The proposed method shows better classification performance with accuracy of 88.04%. The results of this study show that ensemble method is effective to detect diabetes.","PeriodicalId":275003,"journal":{"name":"2014 9th International Conference on Computer Science & Education","volume":"36 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Science & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2014.6926513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Diabetes is one of the most prevalent diseases in medical field. We propose an ensemble method for diagnosis of diabetes on traditional Chinese medicine electronic nose signals. To evaluate the effectiveness of our method, we carry out the experiments by comparing single classifier with ensemble classifiers based on support vector machine and logistic classification model. The proposed method shows better classification performance with accuracy of 88.04%. The results of this study show that ensemble method is effective to detect diabetes.