{"title":"Binary MEMS Optically Reconfigurable Gate Array","authors":"Hironobu Morita, Minoru Watanabe","doi":"10.1109/ICIS.2010.89","DOIUrl":null,"url":null,"abstract":"Demand for high-speed dynamic reconfiguration for programmable devices has increased since such fast dynamic reconfiguration can increase the programmable gate array performance. To meet that demand, optically reconfigurable gate arrays (ORGAs) have been developed to achieve the fast dynamic reconfiguration. Among such studies, a MEMS ORGA has been developed. The reconfiguration can be executed not only by switching a laser array but also by switching a holographic memory. The first proposed MEMS ORGA took an analog fringe pattern for generating a configuration context, although the MEMS device is a binary spatial light modulator. The switching capability can therefore not be fully exploited from a MEMS device since a MEMS device requires PWM control for generating an analog fringe pattern. This paper presents a novel binary MEMS ORGA. The binary MEMS ORGA has achieved a 312 ns laser-reconfiguration and 22 us holographic memory switching.","PeriodicalId":338038,"journal":{"name":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACIS 9th International Conference on Computer and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2010.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Demand for high-speed dynamic reconfiguration for programmable devices has increased since such fast dynamic reconfiguration can increase the programmable gate array performance. To meet that demand, optically reconfigurable gate arrays (ORGAs) have been developed to achieve the fast dynamic reconfiguration. Among such studies, a MEMS ORGA has been developed. The reconfiguration can be executed not only by switching a laser array but also by switching a holographic memory. The first proposed MEMS ORGA took an analog fringe pattern for generating a configuration context, although the MEMS device is a binary spatial light modulator. The switching capability can therefore not be fully exploited from a MEMS device since a MEMS device requires PWM control for generating an analog fringe pattern. This paper presents a novel binary MEMS ORGA. The binary MEMS ORGA has achieved a 312 ns laser-reconfiguration and 22 us holographic memory switching.