Ovarian Cancer Mass Spectrometry Data Analysis Based on ICA Algorithm

Zhaoxin Wang, Yihui Liu, L. Bai
{"title":"Ovarian Cancer Mass Spectrometry Data Analysis Based on ICA Algorithm","authors":"Zhaoxin Wang, Yihui Liu, L. Bai","doi":"10.1109/FBIE.2008.101","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) can find hidden information on the mass spectrometry (MS) data. However, ICA does not take advantage of prior information in the construction of sub-space, as no consideration is taken about the class information. In this research a supervised version of ICA (SICA) is introduced. Due to the large amount of information contained within MS data, the 'curse of dimensionality' must be solved before ICA and SICA are employed. This paper examines the performance of ICA and SICA using the following feature extraction and feature selection algorithms on ovarian cancer MS data, namely principal component analysis (PCA), 2nd-PCA, and T-test. Experimental results show that the performance of ICA and SICA can achieve good classification results on ovarian cancer MS dataset pre-processed by T-test.","PeriodicalId":415908,"journal":{"name":"2008 International Seminar on Future BioMedical Information Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future BioMedical Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FBIE.2008.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Independent component analysis (ICA) can find hidden information on the mass spectrometry (MS) data. However, ICA does not take advantage of prior information in the construction of sub-space, as no consideration is taken about the class information. In this research a supervised version of ICA (SICA) is introduced. Due to the large amount of information contained within MS data, the 'curse of dimensionality' must be solved before ICA and SICA are employed. This paper examines the performance of ICA and SICA using the following feature extraction and feature selection algorithms on ovarian cancer MS data, namely principal component analysis (PCA), 2nd-PCA, and T-test. Experimental results show that the performance of ICA and SICA can achieve good classification results on ovarian cancer MS dataset pre-processed by T-test.
基于ICA算法的卵巢癌质谱数据分析
独立成分分析(ICA)可以从质谱分析(MS)数据中发现隐藏的信息。但是,ICA在构建子空间时没有利用先验信息,没有考虑类信息。本研究介绍了一种监督版的ICA (SICA)。由于MS数据中包含大量的信息,在使用ICA和SICA之前必须解决“维度诅咒”。本文采用主成分分析(principal component analysis, PCA)、二阶主成分分析(second -PCA)和t检验三种特征提取和特征选择算法对卵巢癌MS数据进行了ICA和SICA的性能检验。实验结果表明,在经过t检验预处理的卵巢癌MS数据集上,ICA和SICA的性能均能取得较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信