Fadi Al Machot, A. Mosa, Kosai Dabbour, A. Fasih, Christopher Schwarzlmuller, Mouhanndad Ali, K. Kyamakya
{"title":"A novel real-time emotion detection system from audio streams based on Bayesian Quadratic Discriminate Classifier for ADAS","authors":"Fadi Al Machot, A. Mosa, Kosai Dabbour, A. Fasih, Christopher Schwarzlmuller, Mouhanndad Ali, K. Kyamakya","doi":"10.1109/INDS.2011.6024783","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time emotion recognition concept of voice streams. A comprehensive solution based on Bayesian Quadratic Discriminate Classifier(QDC) is developed. The developed system supports Advanced Driver Assistance Systems (ADAS) to detect the mood of the driver based on the fact that aggressive behavior on road leads to traffic accidents. We use only 12 features to classify between 5 different classes of emotions. We illustrate that the extracted emotion features are highly overlapped and how each emotion class is effecting the recognition ratio. Finally, we show that the Bayesian Quadratic Discriminate Classifier is an appropriate solution for emotion detection systems, where a real-time detection is deeply needed with a low number of features.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
This paper presents a real-time emotion recognition concept of voice streams. A comprehensive solution based on Bayesian Quadratic Discriminate Classifier(QDC) is developed. The developed system supports Advanced Driver Assistance Systems (ADAS) to detect the mood of the driver based on the fact that aggressive behavior on road leads to traffic accidents. We use only 12 features to classify between 5 different classes of emotions. We illustrate that the extracted emotion features are highly overlapped and how each emotion class is effecting the recognition ratio. Finally, we show that the Bayesian Quadratic Discriminate Classifier is an appropriate solution for emotion detection systems, where a real-time detection is deeply needed with a low number of features.