Revealing the high room and low temperature mobilities of 2D holes in a strained Ge quantum well heterostructures grown on a standard Si(001) substrate

M. Myronov, C. Morrison, J. Halpin, S. Rhead, J. Foronda, D. Leadley
{"title":"Revealing the high room and low temperature mobilities of 2D holes in a strained Ge quantum well heterostructures grown on a standard Si(001) substrate","authors":"M. Myronov, C. Morrison, J. Halpin, S. Rhead, J. Foronda, D. Leadley","doi":"10.1109/ISTDM.2014.6874628","DOIUrl":null,"url":null,"abstract":"We report an extremely high 2DHG mobility of 4500 cm2V-1s-1 and 777000 cm2V-1s-1 at 293 and 0.333 K, respectively, in a compressively strained Ge QW grown by industrial type RP-CVD on a standard Si(001) substrate. The obtained 2DHG mobility is substantially higher than those reported so far and in structures grown by research type epitaxial growth techniques, i.e. SS-MBE and LEPE-CVD. Also, the room and low temperature hole mobilities obtained are the highest not only among the group-IV Si and Ge based semiconductors, but also among p-type III-V and II-VI ones. These results demonstrate the very high quality of the strained Ge QW epilayers grown by RP-CVD and the huge potential for further applications of such materials in modern and future CMOS, p-MOSFET and p-MODFET electronic devices. The 2DHG mobility is already sufficiently high to fabricate sub-100 nm electronic devices and demonstrate ballistic transport therein at or around room temperature.","PeriodicalId":371483,"journal":{"name":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTDM.2014.6874628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We report an extremely high 2DHG mobility of 4500 cm2V-1s-1 and 777000 cm2V-1s-1 at 293 and 0.333 K, respectively, in a compressively strained Ge QW grown by industrial type RP-CVD on a standard Si(001) substrate. The obtained 2DHG mobility is substantially higher than those reported so far and in structures grown by research type epitaxial growth techniques, i.e. SS-MBE and LEPE-CVD. Also, the room and low temperature hole mobilities obtained are the highest not only among the group-IV Si and Ge based semiconductors, but also among p-type III-V and II-VI ones. These results demonstrate the very high quality of the strained Ge QW epilayers grown by RP-CVD and the huge potential for further applications of such materials in modern and future CMOS, p-MOSFET and p-MODFET electronic devices. The 2DHG mobility is already sufficiently high to fabricate sub-100 nm electronic devices and demonstrate ballistic transport therein at or around room temperature.
揭示了在标准Si(001)衬底上生长的应变Ge量子阱异质结构中二维空穴的高室温和低温迁移率
在标准Si(001)衬底上通过工业型RP-CVD生长的压缩应变Ge QW中,在293 K和0.333 K下,2DHG迁移率分别为4500 cm2V-1s-1和777000 cm2V-1s-1。所获得的2DHG迁移率大大高于迄今为止报道的,并且在研究型外延生长技术(即SS-MBE和LEPE-CVD)中生长的结构中。得到的室温和低温空穴迁移率不仅在iv族Si和Ge基半导体中最高,而且在III-V和II-VI型半导体中也最高。这些结果证明了RP-CVD生长的应变Ge QW薄膜的高质量,以及这种材料在现代和未来CMOS, p-MOSFET和p-MODFET电子器件中的进一步应用的巨大潜力。2DHG的迁移率已经足够高,可以制造低于100纳米的电子器件,并在室温或室温附近演示其中的弹道传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信