A Big-Data platform for Medical Knowledge Extraction from Electronic Health Records: Automatic Assignment of ICD-9 Codes

C. Sideris, Sakib Shaikh, H. Kalantarian, M. Sarrafzadeh
{"title":"A Big-Data platform for Medical Knowledge Extraction from Electronic Health Records: Automatic Assignment of ICD-9 Codes","authors":"C. Sideris, Sakib Shaikh, H. Kalantarian, M. Sarrafzadeh","doi":"10.1145/2910674.2910685","DOIUrl":null,"url":null,"abstract":"In this paper, we present a big data plarform for knowledge categorization in Electronic Health Records and examine its application to automatic assignment of ICD-9 codes. Our platform relies on reusable, adaptable components that can perform knowledge extraction at a large scale. For the ICD-9 automatic assignment, we build and validate our approach using data from the MIMIC II Clinical Database that contains over 20,000 discharge summaries. We show that our platform can achieve state of the art performance in this dataset and that the classification results improve with more data. Overall, in the first level of the ICD-9 hierarchy our algorithm achieves an average precision of 79.7% for an average recall of 70.2%.","PeriodicalId":359504,"journal":{"name":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910674.2910685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a big data plarform for knowledge categorization in Electronic Health Records and examine its application to automatic assignment of ICD-9 codes. Our platform relies on reusable, adaptable components that can perform knowledge extraction at a large scale. For the ICD-9 automatic assignment, we build and validate our approach using data from the MIMIC II Clinical Database that contains over 20,000 discharge summaries. We show that our platform can achieve state of the art performance in this dataset and that the classification results improve with more data. Overall, in the first level of the ICD-9 hierarchy our algorithm achieves an average precision of 79.7% for an average recall of 70.2%.
电子病历医学知识提取的大数据平台:ICD-9编码的自动分配
本文提出了一个电子健康档案知识分类的大数据平台,并对其在ICD-9编码自动分配中的应用进行了研究。我们的平台依赖于可重用的、可适应的组件,这些组件可以大规模地执行知识提取。对于ICD-9自动分配,我们使用MIMIC II临床数据库中的数据建立并验证了我们的方法,该数据库包含超过20,000份出院摘要。我们表明,我们的平台可以在这个数据集中达到最先进的性能,并且随着数据的增加,分类结果也会得到改善。总体而言,在ICD-9层次结构的第一级,我们的算法实现了平均精度为79.7%,平均召回率为70.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信