{"title":"M-ary frequency shift keying signal classification based-on discrete Fourier transform","authors":"Z. Yu, Y.Q. Shi, W. Su","doi":"10.1109/MILCOM.2003.1290361","DOIUrl":null,"url":null,"abstract":"The existing decision-theory based classifiers for M-ary frequency shift keying (MFSK) signals have assumed that there is some prior knowledge of the transmitted MFSK signal parameters; while the feature-based classifiers have some limitations such as that their thresholds are signal-to-noise-ratio-dependent (SNR-dependent). In this paper, we investigate some useful properties of the amplitude spectrum of MFSK signals. Using these properties as classification criteria, a fast Fourier transform based classifier (FFTC) of MFSK signals has been developed. The FFTC algorithm is practical since it only requires some reasonable knowledge of a received signal. It is found that the FFTC algorithm works well in classifying 2-FSK, 4-FSK, 8-FSK, 16-FSK, and 32-FSK signals when SNR>0dB. The FFTC algorithm also gives good estimation of the frequency deviation of the received MFSK signal.","PeriodicalId":435910,"journal":{"name":"IEEE Military Communications Conference, 2003. MILCOM 2003.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Military Communications Conference, 2003. MILCOM 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2003.1290361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The existing decision-theory based classifiers for M-ary frequency shift keying (MFSK) signals have assumed that there is some prior knowledge of the transmitted MFSK signal parameters; while the feature-based classifiers have some limitations such as that their thresholds are signal-to-noise-ratio-dependent (SNR-dependent). In this paper, we investigate some useful properties of the amplitude spectrum of MFSK signals. Using these properties as classification criteria, a fast Fourier transform based classifier (FFTC) of MFSK signals has been developed. The FFTC algorithm is practical since it only requires some reasonable knowledge of a received signal. It is found that the FFTC algorithm works well in classifying 2-FSK, 4-FSK, 8-FSK, 16-FSK, and 32-FSK signals when SNR>0dB. The FFTC algorithm also gives good estimation of the frequency deviation of the received MFSK signal.