{"title":"Formal Guarantees in Data-Driven Model Identification and Control Synthesis","authors":"Sadra Sadraddini, C. Belta","doi":"10.1145/3178126.3178145","DOIUrl":null,"url":null,"abstract":"For many performance-critical control systems, an accurate (simple) model is not available in practice. Thus, designing controllers with formal performance guarantees is challenging. In this paper, we develop a framework to use input-output data from an unknown system to synthesize controllers from signal temporal logic (STL) specifications. First, by imposing mild assumptions on system continuity, we find a set-valued piecewise affine (PWA) model that contains all the possible behaviors of the concrete system. Next, we introduce a novel method for STL control of PWA systems with additive disturbances. By taking advantage of STL quantitative semantics, we provide lower-bound certificates on the degree of STL satisfaction of the closed-loop concrete system. Illustrative examples are presented.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178126.3178145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
For many performance-critical control systems, an accurate (simple) model is not available in practice. Thus, designing controllers with formal performance guarantees is challenging. In this paper, we develop a framework to use input-output data from an unknown system to synthesize controllers from signal temporal logic (STL) specifications. First, by imposing mild assumptions on system continuity, we find a set-valued piecewise affine (PWA) model that contains all the possible behaviors of the concrete system. Next, we introduce a novel method for STL control of PWA systems with additive disturbances. By taking advantage of STL quantitative semantics, we provide lower-bound certificates on the degree of STL satisfaction of the closed-loop concrete system. Illustrative examples are presented.