Stochastic Learning of Time-Varying Parameters in Random Environment

Y. Chien, K. Fu
{"title":"Stochastic Learning of Time-Varying Parameters in Random Environment","authors":"Y. Chien, K. Fu","doi":"10.1109/TSSC.1969.300266","DOIUrl":null,"url":null,"abstract":"The problem of learning in nonstationary environment is formulated as that of estimating time-varying parameters of a probability distribution which characterizes the process under study. Dynamic stochastic approximation algorithms are proposed to estimate the unknown time-varying parameters in a recursive fashion. Both supervised and nonsupervised learning schemes are discussed and their convergence properties are investigated. An accelerated scheme for the possible improvement of the dynamic algorithm is given. Numerical examples and an application of the proposed algorithm to a problem in weather forecasting are presented.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1969.300266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The problem of learning in nonstationary environment is formulated as that of estimating time-varying parameters of a probability distribution which characterizes the process under study. Dynamic stochastic approximation algorithms are proposed to estimate the unknown time-varying parameters in a recursive fashion. Both supervised and nonsupervised learning schemes are discussed and their convergence properties are investigated. An accelerated scheme for the possible improvement of the dynamic algorithm is given. Numerical examples and an application of the proposed algorithm to a problem in weather forecasting are presented.
随机环境下时变参数的随机学习
非平稳环境下的学习问题被表述为估计表征所研究过程的概率分布的时变参数的问题。提出了动态随机逼近算法,以递归方式估计未知时变参数。讨论了监督学习方案和非监督学习方案,并研究了它们的收敛性。给出了一种可能改进动态算法的加速方案。最后给出了该算法在某天气预报问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信