Rolling Bearing Fault Diagnosis Based on Meta-Learning with Few-Shot Samples

Yunpeng He, C. Zang, Peng Zeng, Mingxin Wang, Qingwei Dong, Yuqi Liu
{"title":"Rolling Bearing Fault Diagnosis Based on Meta-Learning with Few-Shot Samples","authors":"Yunpeng He, C. Zang, Peng Zeng, Mingxin Wang, Qingwei Dong, Yuqi Liu","doi":"10.1109/IAI53119.2021.9619308","DOIUrl":null,"url":null,"abstract":"As an essential component of mechanical equipment, the state of the rolling bearing has a substantial impact on the operation of the entire automatic system. The fault diagnostic technology based on deep learning surpasses the traditional fault diagnosis technology in many aspects and dramatically improves the accuracy of fault diagnosis but requires a massive amount of labeled data for training. Generally, it takes a lot of effort to obtain tagged data in a natural industrial environment. Therefore, this paper proposes a rolling bearing fault diagnosis method based on meta-learning, which applies the experience learned in the past to new tasks to use few-shot labeled rolling bearing fault samples for training to obtain reliable diagnosis accuracy. The results show that the proposed method can significantly improve few-shot rolling bearing fault samples' accuracy than other traditional methods.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As an essential component of mechanical equipment, the state of the rolling bearing has a substantial impact on the operation of the entire automatic system. The fault diagnostic technology based on deep learning surpasses the traditional fault diagnosis technology in many aspects and dramatically improves the accuracy of fault diagnosis but requires a massive amount of labeled data for training. Generally, it takes a lot of effort to obtain tagged data in a natural industrial environment. Therefore, this paper proposes a rolling bearing fault diagnosis method based on meta-learning, which applies the experience learned in the past to new tasks to use few-shot labeled rolling bearing fault samples for training to obtain reliable diagnosis accuracy. The results show that the proposed method can significantly improve few-shot rolling bearing fault samples' accuracy than other traditional methods.
基于少采样元学习的滚动轴承故障诊断
滚动轴承作为机械设备必不可少的组成部分,其状态对整个自动化系统的运行有着实质性的影响。基于深度学习的故障诊断技术在许多方面都超越了传统的故障诊断技术,极大地提高了故障诊断的准确性,但需要大量的标记数据进行训练。通常,在自然工业环境中获取标记数据需要花费大量精力。因此,本文提出了一种基于元学习的滚动轴承故障诊断方法,将过去学习到的经验应用到新的任务中,使用少量标记的滚动轴承故障样本进行训练,以获得可靠的诊断精度。结果表明,与传统方法相比,该方法能显著提高滚动轴承小丸故障样本的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信