Simultaneous on-line monitoring and wave-net learning

M. Jafari, A. Safavi
{"title":"Simultaneous on-line monitoring and wave-net learning","authors":"M. Jafari, A. Safavi","doi":"10.1109/IRANIANCEE.2010.5506984","DOIUrl":null,"url":null,"abstract":"Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5506984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.
同时在线监测和波网学习
目前的在线波网学习算法在没有考虑过程运行异常情况的情况下,根据时变过程的新变化来适应已识别的过程模型。因此,如果干扰发生并使过程发生变化,当前的在线学习将主要模型更新为不合适的模型。本文提出了一种方法,首先结合自适应动态主成分分析(adaptive DPCA)从异常变化中确定时变过程的正常变化,然后仅根据正常变化更新模型。以双连续搅拌槽反应器(CSTR)为例,验证了该方法的有效性。结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信