{"title":"Simultaneous on-line monitoring and wave-net learning","authors":"M. Jafari, A. Safavi","doi":"10.1109/IRANIANCEE.2010.5506984","DOIUrl":null,"url":null,"abstract":"Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5506984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.