M. Stier, J. Doyle, M. Duffy, K. S. Gottschalck, S. Gullapalli, J. Neuner
{"title":"Cryogenic Performance of the Space Infrared Telescope Facility Prototype Secondary Mirror Assembly","authors":"M. Stier, J. Doyle, M. Duffy, K. S. Gottschalck, S. Gullapalli, J. Neuner","doi":"10.1364/soa.1991.tub3","DOIUrl":null,"url":null,"abstract":"The Space Infrared Telescope Facility (SIRTF), planned for an early 21st century launch, is the fourth of NASA's Great Observatories. It contains a 1-meter class Ritchey-Chretien telescope, all of whose components will be cryogenically cooled to superfluid helium temperatures. Achievement of diffraction-limited performance at wavelengths as short as 3 μm will likely require realignment of the secondary mirror following launch. Efficient use of SIRTF's limited cryogenic lifetime (5 years, with a sensitivity of 1 month/mW) requires a means for tilting the secondary mirror to rapidly relocate the telescope's line of sight and to map small regions of the sky. Furthermore, at the longest SIRTF wavelengths (200-1200 μm) the emission from the cooled telescope will be significant, thereby requiring the use of periodic tilt oscillations of the secondary mirror to modulate the signal.","PeriodicalId":184695,"journal":{"name":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/soa.1991.tub3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Space Infrared Telescope Facility (SIRTF), planned for an early 21st century launch, is the fourth of NASA's Great Observatories. It contains a 1-meter class Ritchey-Chretien telescope, all of whose components will be cryogenically cooled to superfluid helium temperatures. Achievement of diffraction-limited performance at wavelengths as short as 3 μm will likely require realignment of the secondary mirror following launch. Efficient use of SIRTF's limited cryogenic lifetime (5 years, with a sensitivity of 1 month/mW) requires a means for tilting the secondary mirror to rapidly relocate the telescope's line of sight and to map small regions of the sky. Furthermore, at the longest SIRTF wavelengths (200-1200 μm) the emission from the cooled telescope will be significant, thereby requiring the use of periodic tilt oscillations of the secondary mirror to modulate the signal.