HRTEM image-stitching for measurement of distances

G. Radnóczi, Zoltán Herceg, Tamás Kiss
{"title":"HRTEM image-stitching for measurement of distances","authors":"G. Radnóczi, Zoltán Herceg, Tamás Kiss","doi":"10.1556/2051.2020.00086","DOIUrl":null,"url":null,"abstract":"Very accurate measurement of distances in the order of several µm is demonstrated on a single crystal Si sample by counting the lattice fringes on stitched high resolution TEM/STEM images. Stitching of TEM images commonly relies on correspondence points found in the image, however, the nearly perfect periodic nature of a lattice image renders such a procedure very unreliable. To overcome this difficulty artificial correspondence points are created on the sample using the electron beam. An accuracy better than 1% can be reached while measuring distances in the order of 1 µm. A detailed description of the process is provided, and its usability for accurately measuring large distances is discussed in detail.","PeriodicalId":251226,"journal":{"name":"Resolution and Discovery","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resolution and Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/2051.2020.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Very accurate measurement of distances in the order of several µm is demonstrated on a single crystal Si sample by counting the lattice fringes on stitched high resolution TEM/STEM images. Stitching of TEM images commonly relies on correspondence points found in the image, however, the nearly perfect periodic nature of a lattice image renders such a procedure very unreliable. To overcome this difficulty artificial correspondence points are created on the sample using the electron beam. An accuracy better than 1% can be reached while measuring distances in the order of 1 µm. A detailed description of the process is provided, and its usability for accurately measuring large distances is discussed in detail.
用于距离测量的HRTEM图像拼接
通过对拼接的高分辨率TEM/STEM图像上的晶格条纹进行计数,可以在单晶Si样品上非常精确地测量几微米的距离。TEM图像的拼接通常依赖于图像中的对应点,然而,晶格图像近乎完美的周期性使得这种方法非常不可靠。为了克服这一困难,利用电子束在样品上产生人工对应点。在测量1 μ m量级的距离时,精度优于1%。对该方法进行了详细的描述,并对其用于大距离精确测量的实用性进行了详细的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信