Enforcing Causality and Passivity of Neural Network Models of Broadband S-Parameters

H. Torun, A. C. Durgun, K. Aygün, M. Swaminathan
{"title":"Enforcing Causality and Passivity of Neural Network Models of Broadband S-Parameters","authors":"H. Torun, A. C. Durgun, K. Aygün, M. Swaminathan","doi":"10.1109/EPEPS47316.2019.193234","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to ensure that S-Parameters generated using neural network (NN) models are physically consistent and can be safely used in subsequent time-domain simulations. This is achieved by introducing causality and passivity enforcement layers as the last two layers of the NN, while minimizing their computational overhead to the training and inference of the NN model. Proposed technique is demonstrated on learning the mapping from 13 dimensional geometrical parameters of a differential plated through hole (PTH) in package core to its corresponding broadband S-Parameters up to 100 GHz.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a method to ensure that S-Parameters generated using neural network (NN) models are physically consistent and can be safely used in subsequent time-domain simulations. This is achieved by introducing causality and passivity enforcement layers as the last two layers of the NN, while minimizing their computational overhead to the training and inference of the NN model. Proposed technique is demonstrated on learning the mapping from 13 dimensional geometrical parameters of a differential plated through hole (PTH) in package core to its corresponding broadband S-Parameters up to 100 GHz.
宽带s参数神经网络模型的强制因果性和被动性
本文提出了一种方法,以确保使用神经网络(NN)模型生成的s -参数在物理上是一致的,并且可以安全地用于后续的时域仿真。这是通过引入因果关系和被动执行层作为神经网络的最后两层来实现的,同时最小化它们对神经网络模型的训练和推理的计算开销。通过学习从封装核心的差分镀通孔(PTH)的13维几何参数到其对应的高达100 GHz的宽带s参数的映射,证明了所提出的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信