Assessment of high-heat-flux thermal management schemes

I. Mudawar
{"title":"Assessment of high-heat-flux thermal management schemes","authors":"I. Mudawar","doi":"10.1109/ITHERM.2000.866802","DOIUrl":null,"url":null,"abstract":"This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, micro-channel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.","PeriodicalId":201262,"journal":{"name":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"877","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2000.866802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 877

Abstract

This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, micro-channel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling options can be tailored to the specific needs of individual applications, system considerations always play a paramount role in determining the most suitable cooling scheme. It is also shown that extensive fundamental electronic cooling knowledge has been amassed over the past two decades. Yet there is now a growing need for hardware innovations rather than perturbations to those fundamental studies. An example of these innovations is the cooling of military avionics, where research findings from the electronic cooling literature have made possible the development of a new generation of cooling hardware which promise order of magnitude increases in heat dissipation compared to today's cutting edge avionics cooling schemes.
高热通量热管理方案的评估
本文探讨了高热流密度热管理的最新研究进展。讨论并比较了池沸腾、可拆卸散热器、通道流沸腾、微通道和迷你通道散热器、射流冲击和喷雾等冷却方案的散热潜力、可靠性和包装问题。这表明,虽然不同的冷却方案可以根据个别应用的具体需要量身定制,但在确定最合适的冷却方案时,系统考虑始终起着至关重要的作用。它还表明,广泛的基础电子冷却知识已经积累在过去的二十年。然而,现在对硬件创新的需求越来越大,而不是对这些基础研究的干扰。这些创新的一个例子是军用航空电子设备的冷却,电子冷却文献的研究成果使新一代冷却硬件的开发成为可能,与当今尖端的航空电子设备冷却方案相比,这些冷却硬件承诺散热的数量级增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信