Optimal navigation policy for an autonomous agent operating in adversarial environments

Emmanuel Boidot, A. Marzuoli, E. Feron
{"title":"Optimal navigation policy for an autonomous agent operating in adversarial environments","authors":"Emmanuel Boidot, A. Marzuoli, E. Feron","doi":"10.1109/ICRA.2016.7487483","DOIUrl":null,"url":null,"abstract":"We consider an autonomous vehicle navigation problem, whereby a traveler aims at traversing an environment in which an adversary tries to set an ambush. Optimal strategies are computed as random path distributions, a realization of which is the path chosen by the traveler. Theoretical optimal policies are derived under assumptions from the Minimal Cut-Maximal Flow literature. Numerical approaches to compute such optimal strategies are proposed. These numerical approaches, which borrow from randomized path planning techniques, can be implemented for high-dimensional configuration spaces. The methodology developed allows for the application of ambush games on complex environments for realistic applications regarding vehicle routing in adversarial settings.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"18 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider an autonomous vehicle navigation problem, whereby a traveler aims at traversing an environment in which an adversary tries to set an ambush. Optimal strategies are computed as random path distributions, a realization of which is the path chosen by the traveler. Theoretical optimal policies are derived under assumptions from the Minimal Cut-Maximal Flow literature. Numerical approaches to compute such optimal strategies are proposed. These numerical approaches, which borrow from randomized path planning techniques, can be implemented for high-dimensional configuration spaces. The methodology developed allows for the application of ambush games on complex environments for realistic applications regarding vehicle routing in adversarial settings.
对抗环境下自主智能体的最优导航策略
我们考虑一个自动驾驶汽车导航问题,其中旅行者的目标是穿越敌方试图设置伏击的环境。最优策略计算为随机路径分布,其实现是出行者选择的路径。理论最优策略是根据最小-最大流量文献中的假设推导出来的。提出了计算这类最优策略的数值方法。这些数值方法借鉴了随机路径规划技术,适用于高维构型空间。所开发的方法允许在复杂环境中应用伏击游戏,以实现在对抗设置中车辆路由的现实应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信