Resilient hexapod robot

D. Trivun, H. Dindo, B. Lacevic
{"title":"Resilient hexapod robot","authors":"D. Trivun, H. Dindo, B. Lacevic","doi":"10.1109/ICAT.2017.8171613","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method of learning desired behaviour of the specific robotic system and transfer of the existing knowledge in the event of partial system failure. Six-legged robot (hexapod) built on top of the Bioloid platform is used for the method verification. We use genetic algorithms to optimize the hexapod's gait, after which we simulate physical damage caused to the robot. The goal of this method is to optimize the gait in accordance with the actual robot morphology, instead of the assumed one. Also, knowledge that was previously gained will be transferred in order to improve the results. Nonstandard genetic algorithm with the specific mixed population is used for this.","PeriodicalId":112404,"journal":{"name":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2017.8171613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a method of learning desired behaviour of the specific robotic system and transfer of the existing knowledge in the event of partial system failure. Six-legged robot (hexapod) built on top of the Bioloid platform is used for the method verification. We use genetic algorithms to optimize the hexapod's gait, after which we simulate physical damage caused to the robot. The goal of this method is to optimize the gait in accordance with the actual robot morphology, instead of the assumed one. Also, knowledge that was previously gained will be transferred in order to improve the results. Nonstandard genetic algorithm with the specific mixed population is used for this.
弹性六足机器人
在本文中,我们提出了一种学习特定机器人系统期望行为的方法,并在系统局部故障的情况下转移现有知识。采用在Bioloid平台上搭建的六足机器人(hexapod)进行方法验证。我们使用遗传算法来优化六足机器人的步态,然后我们模拟对机器人造成的物理损伤。该方法的目标是根据机器人的实际形态而不是假设的形态来优化步态。此外,以前获得的知识将被转移,以改善结果。该算法采用特定混合种群的非标准遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信