Solving Boltzmann Transport Equation without Monte-Carlo algorithms - new methods for industrial TCAD applications

B. Meinerzhagen, A. Pham, S.-M. Hong, C. Jungemann
{"title":"Solving Boltzmann Transport Equation without Monte-Carlo algorithms - new methods for industrial TCAD applications","authors":"B. Meinerzhagen, A. Pham, S.-M. Hong, C. Jungemann","doi":"10.1109/SISPAD.2010.5604501","DOIUrl":null,"url":null,"abstract":"The Drift-Diffusion model is still by far the most frequently used numerical device model in industry today. One important reason for this success is the robust numerical implementation of this model providing CPU efficient DC, AC, transient, and noise simulations with high accuracy and high convergence reliability. On the other hand, many of todays design applications vary strain, crystal and channel orientation, material composition, and the carrier confinement. Such applications certainly require the solution of the Boltzmann Transport Equation in order to be predictive. It will be demonstrated in this paper that with new alternative discretization and solution methods avoiding the Monte-Carlo algorithm many of the favorable numerical properties of the traditional Drift-Diffusion model can be transferred to numerical device models that include the solution of the Boltzmann Transport Equation.","PeriodicalId":331098,"journal":{"name":"2010 International Conference on Simulation of Semiconductor Processes and Devices","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2010.5604501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The Drift-Diffusion model is still by far the most frequently used numerical device model in industry today. One important reason for this success is the robust numerical implementation of this model providing CPU efficient DC, AC, transient, and noise simulations with high accuracy and high convergence reliability. On the other hand, many of todays design applications vary strain, crystal and channel orientation, material composition, and the carrier confinement. Such applications certainly require the solution of the Boltzmann Transport Equation in order to be predictive. It will be demonstrated in this paper that with new alternative discretization and solution methods avoiding the Monte-Carlo algorithm many of the favorable numerical properties of the traditional Drift-Diffusion model can be transferred to numerical device models that include the solution of the Boltzmann Transport Equation.
不用蒙特卡罗算法求解玻尔兹曼输运方程——工业TCAD应用的新方法
漂移扩散模型仍然是目前工业上最常用的数值装置模型。这一成功的一个重要原因是该模型的鲁棒数值实现,提供具有高精度和高收敛可靠性的CPU高效直流,交流,瞬态和噪声模拟。另一方面,今天的许多设计应用改变了应变、晶体和通道取向、材料组成和载流子限制。这样的应用当然需要玻尔兹曼输运方程的解才能预测。本文将证明,通过新的替代离散化和求解方法,可以避免蒙特卡罗算法,传统漂移-扩散模型的许多有利的数值性质可以转移到包含玻尔兹曼输运方程解的数值装置模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信