N. K. Kranthi, Yang Xiu, Yang Xiao, R. Sankaralingam
{"title":"Current Scalability Issues in Multi-Bank 5V PMOS ESD structures: Root cause and Design Guideline","authors":"N. K. Kranthi, Yang Xiu, Yang Xiao, R. Sankaralingam","doi":"10.1109/IRPS48203.2023.10117950","DOIUrl":null,"url":null,"abstract":"In this work, a unique Human Body Model (HBM) failure is presented in 5V-PMOS multi-finger structures. The failure is sensitive to the multi-bank layout, generally used to achieve higher holding voltage. Missing Transmission Line Pulse (TLP) failure current (It2) scalability is detected with pulse width, in multi-bank structures and a correlation is established with lower HBM failure. A detailed 3D- TCAD analysis approach is used to understand the PMOS turn-on in the single-bank and multi-bank structures, in turn, the It2 scalability for longer pulse width. The obtained insights are used to provide design guidelines for developing robust PMOS devices.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a unique Human Body Model (HBM) failure is presented in 5V-PMOS multi-finger structures. The failure is sensitive to the multi-bank layout, generally used to achieve higher holding voltage. Missing Transmission Line Pulse (TLP) failure current (It2) scalability is detected with pulse width, in multi-bank structures and a correlation is established with lower HBM failure. A detailed 3D- TCAD analysis approach is used to understand the PMOS turn-on in the single-bank and multi-bank structures, in turn, the It2 scalability for longer pulse width. The obtained insights are used to provide design guidelines for developing robust PMOS devices.