Evolutionary learning for improving performance of robot navigation

G. Tewolde
{"title":"Evolutionary learning for improving performance of robot navigation","authors":"G. Tewolde","doi":"10.1109/EIT.2013.6632709","DOIUrl":null,"url":null,"abstract":"This paper presents the application of evolutionary learning techniques for improving performance of robot navigation. The goal is to build an intelligent control algorithm that drives the robot in an unknown environment at the maximum allowable speed, while avoiding obstacles and keeping its rate of turns to a minimum. The robot controller is based on an artificial neural network that takes inputs from range sensors and produces outputs to control the drive motors. The ANN is evolved using a simple genetic algorithm. Two different evolutionary learning approaches are evaluated. In the first approach synaptic weights of the network are evolved, while in the second one the adaptation rules of the synapses are evolved. At the end of the evolutionary processes, both solutions resulted in best performing controllers, that can avoid collisions while maximizing linear speed and minimizing turning.","PeriodicalId":201202,"journal":{"name":"IEEE International Conference on Electro-Information Technology , EIT 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Electro-Information Technology , EIT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2013.6632709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the application of evolutionary learning techniques for improving performance of robot navigation. The goal is to build an intelligent control algorithm that drives the robot in an unknown environment at the maximum allowable speed, while avoiding obstacles and keeping its rate of turns to a minimum. The robot controller is based on an artificial neural network that takes inputs from range sensors and produces outputs to control the drive motors. The ANN is evolved using a simple genetic algorithm. Two different evolutionary learning approaches are evaluated. In the first approach synaptic weights of the network are evolved, while in the second one the adaptation rules of the synapses are evolved. At the end of the evolutionary processes, both solutions resulted in best performing controllers, that can avoid collisions while maximizing linear speed and minimizing turning.
改进机器人导航性能的进化学习
本文介绍了进化学习技术在提高机器人导航性能方面的应用。目标是建立一个智能控制算法,在未知环境中以最大允许速度驱动机器人,同时避开障碍物并将其转弯率保持在最小。机器人控制器基于人工神经网络,从距离传感器获取输入,并产生输出来控制驱动电机。人工神经网络是用一种简单的遗传算法来进化的。评估了两种不同的进化学习方法。第一种方法是进化神经网络的突触权值,第二种方法是进化神经网络的突触适应规则。在进化过程的最后,两种解决方案都产生了性能最好的控制器,可以避免碰撞,同时最大化线性速度和最小化转弯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信