{"title":"Real-time Friction Estimation for Grip Force Control","authors":"Heba Khamis, Benjamin Xia, S. Redmond","doi":"10.1109/ICRA48506.2021.9561640","DOIUrl":null,"url":null,"abstract":"An important capability of humans when performing dexterous precision gripping tasks is our ability to feel both the weight and slipperiness of an object in real-time, and adjust our grip force accordingly. In this paper, we present for the first time a fully-instrumented version of our PapillArray tactile sensor concept, which can sense grip force, object weight, and incipient slip and friction, all in real-time. We demonstrate the real-time estimation of friction and measurement of 3D force from PapillArray sensors mounted on each finger of a two-finger gripper, combined with a closed-loop grip-force control algorithm that dynamically applies a near-optimal grip force to avoid dropping objects of varying weight and friction. A vertical lifting task was performed using an object with varying weight and friction, and with some common household items. After intentionally adding a 20% safety margin on the target grip force, the actual grip force applied was only 9-30 % greater than that required to avoid slip. Future work will focus on incorporating real-time torque measurement into the grip force feedback control. This will significantly advance the state-of-the-art in artificial tactile sensing and bring us closer to robotic dexterity.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
An important capability of humans when performing dexterous precision gripping tasks is our ability to feel both the weight and slipperiness of an object in real-time, and adjust our grip force accordingly. In this paper, we present for the first time a fully-instrumented version of our PapillArray tactile sensor concept, which can sense grip force, object weight, and incipient slip and friction, all in real-time. We demonstrate the real-time estimation of friction and measurement of 3D force from PapillArray sensors mounted on each finger of a two-finger gripper, combined with a closed-loop grip-force control algorithm that dynamically applies a near-optimal grip force to avoid dropping objects of varying weight and friction. A vertical lifting task was performed using an object with varying weight and friction, and with some common household items. After intentionally adding a 20% safety margin on the target grip force, the actual grip force applied was only 9-30 % greater than that required to avoid slip. Future work will focus on incorporating real-time torque measurement into the grip force feedback control. This will significantly advance the state-of-the-art in artificial tactile sensing and bring us closer to robotic dexterity.