Integrating Scan Design and Soft Error Correction in Low-Power Applications

M. Imhof, H. Wunderlich, Christian G. Zoellin
{"title":"Integrating Scan Design and Soft Error Correction in Low-Power Applications","authors":"M. Imhof, H. Wunderlich, Christian G. Zoellin","doi":"10.1109/IOLTS.2008.31","DOIUrl":null,"url":null,"abstract":"Error correcting coding is the dominant technique to achieve acceptable soft-error rates in memory arrays. In many modern circuits, the number of memory elements in the random logic is in the order of the number of SRAM cells on chips only a few years ago. Often latches are clock gated and have to retain their states during longer periods. Moreover, miniaturization has led to elevated susceptibility of the memory elements and further increases the need for protection. This paper presents a fault-tolerant register latch organization that is able to detect single-bit errors while it is clock gated. With active clock, single and multiple errors are detected. The registers can be efficiently integrated similar to the scan design flow, and error detecting or locating information can be collected at module level. The resulting structure can be efficiently reused for offline and general online testing.","PeriodicalId":261786,"journal":{"name":"2008 14th IEEE International On-Line Testing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th IEEE International On-Line Testing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2008.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Error correcting coding is the dominant technique to achieve acceptable soft-error rates in memory arrays. In many modern circuits, the number of memory elements in the random logic is in the order of the number of SRAM cells on chips only a few years ago. Often latches are clock gated and have to retain their states during longer periods. Moreover, miniaturization has led to elevated susceptibility of the memory elements and further increases the need for protection. This paper presents a fault-tolerant register latch organization that is able to detect single-bit errors while it is clock gated. With active clock, single and multiple errors are detected. The registers can be efficiently integrated similar to the scan design flow, and error detecting or locating information can be collected at module level. The resulting structure can be efficiently reused for offline and general online testing.
集成扫描设计和软错误校正在低功耗应用
纠错编码是在存储器阵列中实现可接受的软错误率的主要技术。在许多现代电路中,随机逻辑中的存储元件的数量与几年前芯片上的SRAM单元的数量相同。锁存器通常是时钟门控的,必须在较长时间内保持其状态。此外,小型化导致存储元件的易感性提高,进一步增加了对保护的需求。本文提出了一种容错寄存器锁存机构,能够在时钟门控时检测到单比特错误。在有源时钟下,可以检测单个和多个错误。寄存器可以像扫描设计流程一样有效地集成,并且可以在模块级收集错误检测或定位信息。生成的结构可以有效地用于离线和一般在线测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信