Effect of Different Threshold Levels for Binarization Method in Image Classification

Serkan Saǧlam, S. Bayar
{"title":"Effect of Different Threshold Levels for Binarization Method in Image Classification","authors":"Serkan Saǧlam, S. Bayar","doi":"10.1109/ISFEE51261.2020.9756173","DOIUrl":null,"url":null,"abstract":"Image processing is the most preferred technique in Computer-Aided Design (CAD) studies, and therefore the enhancement of image processing plays an essential role in the advancement of technology. The primary purpose of this study is to examine the effect of fixed threshold value on images of different sizes when using the binarization method in image processing. The analyzes are made based on the change in the detection accuracy percentage of the K-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN) classification methods on the MATLAB software platform. At the same time, the effect of the binarization threshold value on images with different pixel dimensions (8x8, 16x16, 32x32, 64x64, and 128x128) are investigated. CNN classification obtained the best accuracy percentage in the used malaria disease blood cell data 97.5%, followed by k-NN with 95% and SVM with 91.5%.","PeriodicalId":145923,"journal":{"name":"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISFEE51261.2020.9756173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image processing is the most preferred technique in Computer-Aided Design (CAD) studies, and therefore the enhancement of image processing plays an essential role in the advancement of technology. The primary purpose of this study is to examine the effect of fixed threshold value on images of different sizes when using the binarization method in image processing. The analyzes are made based on the change in the detection accuracy percentage of the K-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN) classification methods on the MATLAB software platform. At the same time, the effect of the binarization threshold value on images with different pixel dimensions (8x8, 16x16, 32x32, 64x64, and 128x128) are investigated. CNN classification obtained the best accuracy percentage in the used malaria disease blood cell data 97.5%, followed by k-NN with 95% and SVM with 91.5%.
不同阈值水平对二值化方法在图像分类中的影响
图像处理是计算机辅助设计(CAD)研究中最常用的技术,因此图像处理技术的提高对技术的进步起着至关重要的作用。本研究的主要目的是研究在图像处理中使用二值化方法时,固定阈值对不同尺寸图像的影响。基于MATLAB软件平台上k-最近邻(k-NN)、支持向量机(SVM)和卷积神经网络(CNN)分类方法检测准确率的变化进行分析。同时,研究了二值化阈值对不同像素尺寸(8x8、16x16、32x32、64x64、128x128)图像的影响。CNN分类在使用的疟疾血细胞数据中准确率最高,为97.5%,k-NN次之,准确率为95%,SVM为91.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信