{"title":"Adaptive Mixed Criticality Scheduling with Deferred Preemption","authors":"A. Burns, Robert I. Davis","doi":"10.1109/RTSS.2014.12","DOIUrl":null,"url":null,"abstract":"Adaptive Mixed Criticality (AMC) scheduling has previously been shown to be the most effective fixed priority approach for scheduling mixed criticality systems, while the idea of final non-preemptive regions has been shown to improve the schedulability of systems with a single criticality level. In this paper, we combine AMC with the concept of non-preemptive regions by making the final part of each task's execution at each criticality level non-preemptive. We derive schedulability analysis for this approach, and provide an effective algorithm for choosing each task's priority and the durations of its non-preemptive regions. Evaluations illustrate the benefits of this approach in terms of increased schedulability.","PeriodicalId":353167,"journal":{"name":"2014 IEEE Real-Time Systems Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Adaptive Mixed Criticality (AMC) scheduling has previously been shown to be the most effective fixed priority approach for scheduling mixed criticality systems, while the idea of final non-preemptive regions has been shown to improve the schedulability of systems with a single criticality level. In this paper, we combine AMC with the concept of non-preemptive regions by making the final part of each task's execution at each criticality level non-preemptive. We derive schedulability analysis for this approach, and provide an effective algorithm for choosing each task's priority and the durations of its non-preemptive regions. Evaluations illustrate the benefits of this approach in terms of increased schedulability.