Electricity Demand Forecasting Using Differential Evolution Algorithm for Tamil Nadu

S. Amosedinakaran, K. Mala, A. Bhuvanesh, P. Marishkumar
{"title":"Electricity Demand Forecasting Using Differential Evolution Algorithm for Tamil Nadu","authors":"S. Amosedinakaran, K. Mala, A. Bhuvanesh, P. Marishkumar","doi":"10.1109/ICOEI48184.2020.9142872","DOIUrl":null,"url":null,"abstract":"This paper aims to apply the Differential evolution (DE) to forecast the electricity demand for Tamil Nadu based on population, Gross State Domestic Product (GSDP), and Per Capita Income (PCI). The linear and nonlinear models have been applied to forecast electricity demand. The actual data is partially used to attain the best values of the weighting parameters (years from 1980 to 2005) and the remaining data are used for testing the models (years from 2006 to 2017). Three scenarios have been considered (high, average, and low growth) to forecast the electricity demand for Tamil Nadu till the year 2030. Mean Absolute Percentage Error (MAPE) is the estimation key. The results have been validated with the National Electricity Plan (NEP) of India.","PeriodicalId":267795,"journal":{"name":"2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI48184.2020.9142872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper aims to apply the Differential evolution (DE) to forecast the electricity demand for Tamil Nadu based on population, Gross State Domestic Product (GSDP), and Per Capita Income (PCI). The linear and nonlinear models have been applied to forecast electricity demand. The actual data is partially used to attain the best values of the weighting parameters (years from 1980 to 2005) and the remaining data are used for testing the models (years from 2006 to 2017). Three scenarios have been considered (high, average, and low growth) to forecast the electricity demand for Tamil Nadu till the year 2030. Mean Absolute Percentage Error (MAPE) is the estimation key. The results have been validated with the National Electricity Plan (NEP) of India.
基于差分进化算法的泰米尔纳德邦电力需求预测
本文旨在应用差分演化(DE)来预测泰米尔纳德邦基于人口、国内生产总值(GSDP)和人均收入(PCI)的电力需求。线性和非线性模型已被应用于电力需求预测。部分实际数据用于获得加权参数的最佳值(1980 - 2005年),其余数据用于测试模型(2006 - 2017年)。在预测泰米尔纳德邦到2030年的电力需求时,考虑了三种情况(高、平均和低增长)。平均绝对百分比误差(MAPE)是估计的关键。研究结果已在印度国家电力计划(NEP)中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信