ScOSA on the Way to Orbit: Reconfigurable High-Performance Computing for Spacecraft

D. Lüdtke, T. Firchau, Carlos Gonzalez Cortes, Andreas Lund, A. M. Nepal, Mahmoud M. Elbarrawy, Zain Alabedin Haj Hammadeh, Jan-Gerd Mess, Patrick Kenny, Fiona Brömer, Michael Mirzaagha, George Saleip, Hannah Kirstein, Christoph Kirchhefer, A. Gerndt
{"title":"ScOSA on the Way to Orbit: Reconfigurable High-Performance Computing for Spacecraft","authors":"D. Lüdtke, T. Firchau, Carlos Gonzalez Cortes, Andreas Lund, A. M. Nepal, Mahmoud M. Elbarrawy, Zain Alabedin Haj Hammadeh, Jan-Gerd Mess, Patrick Kenny, Fiona Brömer, Michael Mirzaagha, George Saleip, Hannah Kirstein, Christoph Kirchhefer, A. Gerndt","doi":"10.1109/SCC57168.2023.00015","DOIUrl":null,"url":null,"abstract":"The German Aerospace Center (DLR) is developing ScOSA (Scalable On-board Computing for Space Avionics) as a distributed on-board computing architecture for future space missions. The ScOSA architecture consists of commercial off-the-shelf (COTS) and radiation-tolerant nodes interconnected by a SpaceWire network. The system software provides services to enable parallel computing and system reconfiguration. This allows ScOSA to adapt to node errors and failures that COTS hardware is susceptible to in the space environment. In the ongoing ScOSA Flight Experiment project, a ScOSA system consisting of eight Xilinx Zynq systems-on-chip with dual-core ARM-based processors and a LEON3 radiation-tolerant processor is being built for launch on DLR’s next CubeSat in late 2024. In this flight experiment, not only all 18 cores but also the programmable logic will be used for high performance on-board data processing. This paper presents the current hardware and software architecture of ScOSA. The scalability of ScOSA is highlighted from both hardware and software perspectives. We present benchmark results of the ScOSA system and experiments of the ScOSA system software on ESA’s OPS-SAT in orbit in combination with a machine learning application for image classification.","PeriodicalId":258620,"journal":{"name":"2023 IEEE Space Computing Conference (SCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Space Computing Conference (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC57168.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The German Aerospace Center (DLR) is developing ScOSA (Scalable On-board Computing for Space Avionics) as a distributed on-board computing architecture for future space missions. The ScOSA architecture consists of commercial off-the-shelf (COTS) and radiation-tolerant nodes interconnected by a SpaceWire network. The system software provides services to enable parallel computing and system reconfiguration. This allows ScOSA to adapt to node errors and failures that COTS hardware is susceptible to in the space environment. In the ongoing ScOSA Flight Experiment project, a ScOSA system consisting of eight Xilinx Zynq systems-on-chip with dual-core ARM-based processors and a LEON3 radiation-tolerant processor is being built for launch on DLR’s next CubeSat in late 2024. In this flight experiment, not only all 18 cores but also the programmable logic will be used for high performance on-board data processing. This paper presents the current hardware and software architecture of ScOSA. The scalability of ScOSA is highlighted from both hardware and software perspectives. We present benchmark results of the ScOSA system and experiments of the ScOSA system software on ESA’s OPS-SAT in orbit in combination with a machine learning application for image classification.
轨道上的ScOSA:航天器的可重构高性能计算
德国航空航天中心(DLR)正在开发ScOSA(可扩展空间航空电子机载计算),作为未来空间任务的分布式机载计算体系结构。ScOSA架构由商用现货(COTS)和耐辐射节点组成,通过SpaceWire网络相互连接。系统软件提供服务以实现并行计算和系统重构。这使得ScOSA能够适应COTS硬件在空间环境中容易受到的节点错误和故障。在正在进行的ScOSA飞行实验项目中,ScOSA系统由8个Xilinx Zynq片上系统组成,带有双核arm处理器和LEON3耐辐射处理器,将于2024年底在DLR的下一个立方体卫星上发射。在本次飞行实验中,不仅全部18个核心,而且可编程逻辑将用于高性能的机载数据处理。介绍了当前ScOSA的硬件和软件体系结构。从硬件和软件的角度强调了ScOSA的可伸缩性。结合机器学习图像分类应用,给出了ScOSA系统的基准测试结果和ScOSA系统软件在ESA的OPS-SAT在轨上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信