Automatic Target Recognition of SAR images using Random Subspace Ensemble classifier

Zoha PourEbtehaj, D. Ramachandram
{"title":"Automatic Target Recognition of SAR images using Random Subspace Ensemble classifier","authors":"Zoha PourEbtehaj, D. Ramachandram","doi":"10.1109/SPC.2013.6735093","DOIUrl":null,"url":null,"abstract":"A novel framework for Automatic Target Recognition(ATR) in Synthetic Aperture Radar (SAR) imagery using Ensemble classifier is presented. A combination of Principal Component Analysis (PCA) and Non-negative Factorization (NMF) are used as features to a Random Subspace Ensemble with k-NN as base classifiers. The Random Subspace ensemble offers an elegant approach to feature selection when dealing with high dimensional feature set such as in the present case. Our approach has been benchmarked using the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and results indicate our method outperforms other the state-of-the-art SAR ATR techniques reported in the literature.","PeriodicalId":198247,"journal":{"name":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Systems, Process & Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2013.6735093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel framework for Automatic Target Recognition(ATR) in Synthetic Aperture Radar (SAR) imagery using Ensemble classifier is presented. A combination of Principal Component Analysis (PCA) and Non-negative Factorization (NMF) are used as features to a Random Subspace Ensemble with k-NN as base classifiers. The Random Subspace ensemble offers an elegant approach to feature selection when dealing with high dimensional feature set such as in the present case. Our approach has been benchmarked using the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and results indicate our method outperforms other the state-of-the-art SAR ATR techniques reported in the literature.
基于随机子空间集成分类器的SAR图像目标自动识别
提出了一种基于集成分类器的合成孔径雷达(SAR)图像自动目标识别框架。将主成分分析(PCA)和非负因子分解(NMF)相结合作为特征,以k-NN作为基本分类器对随机子空间集成进行分类。在处理高维特征集时,随机子空间集成提供了一种优雅的特征选择方法。我们的方法已经使用移动和静止目标获取和识别(MSTAR)数据集进行了基准测试,结果表明我们的方法优于文献中报道的其他最先进的SAR ATR技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信