Darkside: 2.6GFLOPS, 8.7mW Heterogeneous RISC-V Cluster for Extreme-Edge On-Chip DNN Inference and Training

Angelo Garofalo, Matteo Perotti, Luca Valente, Yvan Tortorella, Alessandro Nadalini, L. Benini, D. Rossi, Francesco Conti
{"title":"Darkside: 2.6GFLOPS, 8.7mW Heterogeneous RISC-V Cluster for Extreme-Edge On-Chip DNN Inference and Training","authors":"Angelo Garofalo, Matteo Perotti, Luca Valente, Yvan Tortorella, Alessandro Nadalini, L. Benini, D. Rossi, Francesco Conti","doi":"10.1109/ESSCIRC55480.2022.9911384","DOIUrl":null,"url":null,"abstract":"Extreme-edge applications using Deep Learning (DL) have strict requirements in terms of latency, throughput, accuracy, and flexibility. Heterogeneous clusters are promising architectural solutions that combine the programmability of DSP-enhanced cores with the performance and efficiency boost of specialized accelerators. We present Darkside, a System-on-Chip with a heterogeneous cluster of 8 RISC-V cores enhanced with 2-b to 32-b mixed-precision integer arithmetic. To further speed-up key compute-intensive Deep Neural Network (DNN) kernels, the cluster is enriched with three specialized digital accelerators: an accelerator for low-data-reuse depthwise convolution kernels (up to 30 MAC/cycle); a minimal overhead datamover to marshal 1-b to 32-b data on-the-fly; a 16-b floating point Tensor Product Engine (TPE) for tiled matrix-multiplication acceleration. Darkside is implemented in 65nm CMOS technology. The cluster achieves a peak integer performance of 65 GOPS and a peak efficiency of 835 GOPS/W when working on 2-b integer DNN kernels. When targeting floating-point tensor operations, the TPE provides up to 18.2 GFLOPS of performance or 300 GFLOPS/W of efficiency – enough to enable on-chip floating-point training at competitive speed coupled with ultra-low power quantized inference.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Extreme-edge applications using Deep Learning (DL) have strict requirements in terms of latency, throughput, accuracy, and flexibility. Heterogeneous clusters are promising architectural solutions that combine the programmability of DSP-enhanced cores with the performance and efficiency boost of specialized accelerators. We present Darkside, a System-on-Chip with a heterogeneous cluster of 8 RISC-V cores enhanced with 2-b to 32-b mixed-precision integer arithmetic. To further speed-up key compute-intensive Deep Neural Network (DNN) kernels, the cluster is enriched with three specialized digital accelerators: an accelerator for low-data-reuse depthwise convolution kernels (up to 30 MAC/cycle); a minimal overhead datamover to marshal 1-b to 32-b data on-the-fly; a 16-b floating point Tensor Product Engine (TPE) for tiled matrix-multiplication acceleration. Darkside is implemented in 65nm CMOS technology. The cluster achieves a peak integer performance of 65 GOPS and a peak efficiency of 835 GOPS/W when working on 2-b integer DNN kernels. When targeting floating-point tensor operations, the TPE provides up to 18.2 GFLOPS of performance or 300 GFLOPS/W of efficiency – enough to enable on-chip floating-point training at competitive speed coupled with ultra-low power quantized inference.
暗面:2.6GFLOPS, 8.7mW异构RISC-V集群,用于片上极端边缘DNN推理和训练
使用深度学习(DL)的极端边缘应用程序在延迟、吞吐量、准确性和灵活性方面有严格的要求。异构集群是一种很有前途的架构解决方案,它结合了dsp增强核心的可编程性和专用加速器的性能和效率提升。我们提出了Darkside,一个片上系统,具有8个RISC-V内核的异构集群,增强了2-b到32-b混合精度整数算法。为了进一步加速关键计算密集型深度神经网络(DNN)内核,集群中增加了三个专门的数字加速器:一个用于低数据重用深度卷积内核的加速器(高达30 MAC/周期);一个最小的开销数据传输,以编组1-b到32b的数据;一个16b浮点张量积引擎(TPE),用于平铺矩阵乘法加速。Darkside采用65nm CMOS技术实现。当使用2-b整数DNN内核时,集群的峰值整数性能为65 GOPS/W,峰值效率为835 GOPS/W。当以浮点张量操作为目标时,TPE提供高达18.2 GFLOPS的性能或300 GFLOPS/W的效率-足以使片上浮点训练以具有竞争力的速度加上超低功耗量化推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信