{"title":"An advanced signature system for OLSR","authors":"D. Raffo, C. Adjih, T. Clausen, P. Mühlethaler","doi":"10.1145/1029102.1029106","DOIUrl":null,"url":null,"abstract":"In this paper we investigate security issues related to the Optimized Link State Routing Protocol -- one example of a proactive routing protocol for MANETs. We inventory the possible attacks against the integrity of the OLSR network routing infrastructure, and present a technique for securing the network. In particular, assuming that a mechanism for routing message authentication (digital signatures) has been deployed, we concentrate on the problem where otherwise \"trusted\" nodes have been compromised by attackers, which could then inject false (however correctly signed) routing messages. Our main approach is based on authentication checks of information injected into the network, and reuse of this information by a node to prove its link state at a later time. We finally synthetize the overhead and the remaining vulnerabilities of the proposed solution.","PeriodicalId":380051,"journal":{"name":"ACM Workshop on Security of ad hoc and Sensor Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Security of ad hoc and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1029102.1029106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126
Abstract
In this paper we investigate security issues related to the Optimized Link State Routing Protocol -- one example of a proactive routing protocol for MANETs. We inventory the possible attacks against the integrity of the OLSR network routing infrastructure, and present a technique for securing the network. In particular, assuming that a mechanism for routing message authentication (digital signatures) has been deployed, we concentrate on the problem where otherwise "trusted" nodes have been compromised by attackers, which could then inject false (however correctly signed) routing messages. Our main approach is based on authentication checks of information injected into the network, and reuse of this information by a node to prove its link state at a later time. We finally synthetize the overhead and the remaining vulnerabilities of the proposed solution.