Numeric Approach on Optimal Control for the Path Following System in Autonomous Vehicle

Huyao Wu, B. Ran
{"title":"Numeric Approach on Optimal Control for the Path Following System in Autonomous Vehicle","authors":"Huyao Wu, B. Ran","doi":"10.1115/detc2019-97518","DOIUrl":null,"url":null,"abstract":"\n In this paper, the control strategies for Path Following System (PFS) in autonomous vehicle, which lets vehicle stay in the center of its lane is discussed, we will create a plant mechanical, mathematical and error dynamics model for the study of PFS, which is stabilized by the state-feedback control law, also considers the output where the sensor is made. We apply mainly an optimal control or configure a Linear-quadratic Regulator (LQR) for state space systems and compare it to that based on the Pole Assignment (PA). Combined with a typical operating scenario of the road, we mainly consider static and dynamic errors in the moving process, and how intensely the error fluctuates and how errors are related to the next time. Figures and data show that the LQR controller successfully adjusts and gives appropriate input to let the vehicle approach to centerline, errors and the steering angle required to negotiate a curved road are presented and analyzed, finally relevant conclusions are drawn.","PeriodicalId":338372,"journal":{"name":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the control strategies for Path Following System (PFS) in autonomous vehicle, which lets vehicle stay in the center of its lane is discussed, we will create a plant mechanical, mathematical and error dynamics model for the study of PFS, which is stabilized by the state-feedback control law, also considers the output where the sensor is made. We apply mainly an optimal control or configure a Linear-quadratic Regulator (LQR) for state space systems and compare it to that based on the Pole Assignment (PA). Combined with a typical operating scenario of the road, we mainly consider static and dynamic errors in the moving process, and how intensely the error fluctuates and how errors are related to the next time. Figures and data show that the LQR controller successfully adjusts and gives appropriate input to let the vehicle approach to centerline, errors and the steering angle required to negotiate a curved road are presented and analyzed, finally relevant conclusions are drawn.
自动驾驶汽车路径跟踪系统最优控制的数值方法
本文讨论了自动驾驶汽车路径跟踪系统(PFS)的控制策略,使车辆保持在车道中心位置,我们将建立一个植物力学、数学和误差动力学模型来研究PFS,该模型由状态反馈控制律稳定,并考虑传感器制造位置的输出。我们主要对状态空间系统应用最优控制或配置线性二次型调节器(LQR),并将其与基于极点配置(PA)的最优控制进行比较。结合典型的道路运行场景,我们主要考虑移动过程中的静态误差和动态误差,以及误差波动的剧烈程度和误差与下一次的关联。图和数据表明,LQR控制器成功地调整并给出适当的输入,使车辆接近中心线,给出并分析了通过弯道所需的误差和转向角度,最后得出了相关结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信