Multi Object Tracking with UAVs using Deep SORT and YOLOv3 RetinaNet Detection Framework

Shivani Kapania, D. Saini, S. Goyal, Narina Thakur, Rachna Jain, P. Nagrath
{"title":"Multi Object Tracking with UAVs using Deep SORT and YOLOv3 RetinaNet Detection Framework","authors":"Shivani Kapania, D. Saini, S. Goyal, Narina Thakur, Rachna Jain, P. Nagrath","doi":"10.1145/3377283.3377284","DOIUrl":null,"url":null,"abstract":"Over the years, object tracking and detection has emerged as one of the most important aspects of UAV applications such as surveillance, reconnaissance, etc. In our paper, we present a tracking-by-detection approach for real-time Multiple Object Tracking (MOT) of footage from a drone-mounted camera. Tracking-by-detection is the leading paradigm considering its computational effectiveness and improved detection algorithms. Our algorithm builds on the baseline Deep SORT algorithm implemented for MOT benchmarks. However, to circumvent the challenges posed by videos captured from a significant height we use a combination of YOLOv3 and RetinaNet for generating detections in each frame. The results of our experiment on the VisDrone 2018 dataset exhibit competitive performance in comparison to the existing trackers.","PeriodicalId":443854,"journal":{"name":"Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377283.3377284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Over the years, object tracking and detection has emerged as one of the most important aspects of UAV applications such as surveillance, reconnaissance, etc. In our paper, we present a tracking-by-detection approach for real-time Multiple Object Tracking (MOT) of footage from a drone-mounted camera. Tracking-by-detection is the leading paradigm considering its computational effectiveness and improved detection algorithms. Our algorithm builds on the baseline Deep SORT algorithm implemented for MOT benchmarks. However, to circumvent the challenges posed by videos captured from a significant height we use a combination of YOLOv3 and RetinaNet for generating detections in each frame. The results of our experiment on the VisDrone 2018 dataset exhibit competitive performance in comparison to the existing trackers.
使用深度排序和YOLOv3视网膜网检测框架的无人机多目标跟踪
多年来,目标跟踪和检测已经成为无人机应用的一个重要方面,如监视、侦察等。在我们的论文中,我们提出了一种用于实时多目标跟踪(MOT)的检测跟踪方法。考虑到其计算效率和改进的检测算法,检测跟踪是领先的范式。我们的算法建立在为MOT基准测试实现的基准Deep SORT算法之上。然而,为了规避从显著高度捕获的视频所带来的挑战,我们使用YOLOv3和RetinaNet的组合在每帧中生成检测。与现有的跟踪器相比,我们在VisDrone 2018数据集上的实验结果显示出具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信