RL-IAC: An exploration policy for online saliency learning on an autonomous mobile robot

Céline Craye, David Filliat, Jean-François Goudou
{"title":"RL-IAC: An exploration policy for online saliency learning on an autonomous mobile robot","authors":"Céline Craye, David Filliat, Jean-François Goudou","doi":"10.1109/IROS.2016.7759716","DOIUrl":null,"url":null,"abstract":"In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.
自主移动机器人在线显著性学习的探索策略
在视觉对象搜索和定位的背景下,显著性图提供了一种有效的方法来查找图像中的候选对象。与大多数方法不同,我们提出了一种直接在机器人上学习显著性地图的方法,通过探索环境,使用几何线索发现显著物体,并学习它们的视觉方面。更重要的是,我们提供了一种自主探索策略,能够驱动机器人完成学习显著性的任务。为此,我们描述了强化学习-智能自适应好奇心算法(RL-IAC),这是一种基于IAC(智能自适应好奇心)的机制,能够引导机器人通过学习进度高的空间区域,同时最大限度地减少在其环境中移动而不学习的时间。我们首先证明了我们的显著性方法是一种有效的工具,可以在输入图像中生成相关的对象框建议,并且显著优于最先进的EdgeBoxes算法。其次,我们表明,与随机探索相比,RL-IAC可以大大减少学习显著性所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信