Estimation of Uncertainty Change of Reliability in Adaptive Sampling Under Prediction Uncertainty of Gaussian Process

Sangjune Bae, N. Kim
{"title":"Estimation of Uncertainty Change of Reliability in Adaptive Sampling Under Prediction Uncertainty of Gaussian Process","authors":"Sangjune Bae, N. Kim","doi":"10.1115/detc2019-97472","DOIUrl":null,"url":null,"abstract":"\n A novel approach is introduced to estimate the change in the variance of the probability of failure by adding a sample to the Gaussian process (GP) in a conservative manner. Uncertainty in probability stems from prediction uncertainty and GP is used to represent the uncertainty. In the estimation of variance, a single-loop Monte Carlo Simulation (MCS) alleviates the computational burden. The result shows that the proposed methodology well predicts the change by a sample, maintaining the conservativeness by ignoring correlation in GP, yet the computational cost is at the same level as single-loop MCS.","PeriodicalId":198662,"journal":{"name":"Volume 2B: 45th Design Automation Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach is introduced to estimate the change in the variance of the probability of failure by adding a sample to the Gaussian process (GP) in a conservative manner. Uncertainty in probability stems from prediction uncertainty and GP is used to represent the uncertainty. In the estimation of variance, a single-loop Monte Carlo Simulation (MCS) alleviates the computational burden. The result shows that the proposed methodology well predicts the change by a sample, maintaining the conservativeness by ignoring correlation in GP, yet the computational cost is at the same level as single-loop MCS.
高斯过程预测不确定性下自适应采样可靠性不确定性变化的估计
提出了一种新的估计失效概率方差变化的方法,即在高斯过程(GP)中以保守的方式加入样本。概率中的不确定性来源于预测的不确定性,用GP来表示不确定性。在方差估计中,单环蒙特卡罗模拟(MCS)减轻了计算负担。结果表明,该方法能够很好地预测样本的变化,并通过忽略GP中的相关性保持了保守性,而计算成本与单回路MCS相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信