An Exploration Technique for the Interacted Multiple Ant Colonies Optimization Framework

Alaa Aljanaby, K. Ku-Mahamud, N. Norwawi
{"title":"An Exploration Technique for the Interacted Multiple Ant Colonies Optimization Framework","authors":"Alaa Aljanaby, K. Ku-Mahamud, N. Norwawi","doi":"10.1109/ISMS.2010.28","DOIUrl":null,"url":null,"abstract":"Interacted Multiple Ant Colonies Optimization (IMACO) is a newly proposed framework. In this framework several colonies of artificial ants are utilized. These colonies are working cooperatively to solve an optimization problem using some interaction technique. Exploration technique is doing an essential job in this framework. This technique is responsible for directing the activity of utilized colonies towards the different parts of the huge search space. This paper describes the newly proposed IMACO framework and proposes an effective exploration technique. Computational tests show that the new exploration technique can furthermore improve the IMACO performance. These tests also show the capability of IMACO to outperform other well known ant algorithms like ant colony system and max-min ant system.","PeriodicalId":434315,"journal":{"name":"2010 International Conference on Intelligent Systems, Modelling and Simulation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Systems, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMS.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Interacted Multiple Ant Colonies Optimization (IMACO) is a newly proposed framework. In this framework several colonies of artificial ants are utilized. These colonies are working cooperatively to solve an optimization problem using some interaction technique. Exploration technique is doing an essential job in this framework. This technique is responsible for directing the activity of utilized colonies towards the different parts of the huge search space. This paper describes the newly proposed IMACO framework and proposes an effective exploration technique. Computational tests show that the new exploration technique can furthermore improve the IMACO performance. These tests also show the capability of IMACO to outperform other well known ant algorithms like ant colony system and max-min ant system.
交互多蚁群优化框架的探索技术
交互式多蚁群优化(IMACO)是一个新提出的框架。在这个框架中,利用了几个人工蚁群。这些蚁群利用交互技术协同工作以解决最优化问题。勘探技术在这个框架中起着至关重要的作用。这种技术负责将被利用的蚁群的活动导向巨大搜索空间的不同部分。本文描述了新提出的IMACO框架,并提出了一种有效的搜索技术。计算试验表明,新的探测技术可以进一步提高图像aco的性能。这些测试还表明,IMACO的性能优于其他已知的蚁群算法,如蚁群系统和最大最小蚁系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信