1.5 kV Vertical Ga2O3 Trench-MIS Schottky Barrier Diodes

Wenshen Li, K. Nomoto, Zongyang Hu, N. Tanen, K. Sasaki, A. Kuramata, D. Jena, H. Xing
{"title":"1.5 kV Vertical Ga2O3 Trench-MIS Schottky Barrier Diodes","authors":"Wenshen Li, K. Nomoto, Zongyang Hu, N. Tanen, K. Sasaki, A. Kuramata, D. Jena, H. Xing","doi":"10.1109/DRC.2018.8442245","DOIUrl":null,"url":null,"abstract":"$\\beta-\\mathrm{Ga}_{2}\\mathrm{O}_{3}$ electronic devices for high power applications have seen rapid development over the recent years, due to the excellent material properties including an extremely large band-gap, high critical electric field, decent electron mobility and the availability of low-cost bulk substrates. As unipolar devices, Ga2O3 vertical Schottky barrier diodes (SBDs) have fast switching capability, while enjoying all the superior properties of Ga2O3. With the development of halide vapor phase epitaxy (HVPE) capable of delivering high quality thick n– epitaxial layers [1], $\\mathrm{Ga}_{2}\\mathrm{O}_{3}$ vertical SBDs have shown promising results with up to 1 kV breakdown voltage (BV) together with decent on-resistance $(\\mathrm{R}_{\\mathrm{on}})$ of $2-6\\ \\mathrm{m}\\Omega\\cdot \\mathrm{cm}^{2}\\ [1-3]$. However, the results are still far from the projected performance which surpasses GaN and SiC [4]. One important reason is the high reverse leakage current due to the high surface electric field, which causes thermionic-field emission and barrier height lowering, especially at the device edge where field crowding occurs. The leakage current can be much reduced by edge termination techniques such as field-plating [3]. More effectively, a trench-metal-insulator-semiconductor (MIS) structure can be utilized to reduce the leakage current [5], taking advantage of the reduced surface field (RESURF) effect [6]. In this work, we demonstrate Ga2O3 trench-MIS SBDs with a record-high 1.5 kV breakdown voltage without edge termination, together with a ~104 times reduction in reverse leakage current compared with regular SBDs.","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

$\beta-\mathrm{Ga}_{2}\mathrm{O}_{3}$ electronic devices for high power applications have seen rapid development over the recent years, due to the excellent material properties including an extremely large band-gap, high critical electric field, decent electron mobility and the availability of low-cost bulk substrates. As unipolar devices, Ga2O3 vertical Schottky barrier diodes (SBDs) have fast switching capability, while enjoying all the superior properties of Ga2O3. With the development of halide vapor phase epitaxy (HVPE) capable of delivering high quality thick n– epitaxial layers [1], $\mathrm{Ga}_{2}\mathrm{O}_{3}$ vertical SBDs have shown promising results with up to 1 kV breakdown voltage (BV) together with decent on-resistance $(\mathrm{R}_{\mathrm{on}})$ of $2-6\ \mathrm{m}\Omega\cdot \mathrm{cm}^{2}\ [1-3]$. However, the results are still far from the projected performance which surpasses GaN and SiC [4]. One important reason is the high reverse leakage current due to the high surface electric field, which causes thermionic-field emission and barrier height lowering, especially at the device edge where field crowding occurs. The leakage current can be much reduced by edge termination techniques such as field-plating [3]. More effectively, a trench-metal-insulator-semiconductor (MIS) structure can be utilized to reduce the leakage current [5], taking advantage of the reduced surface field (RESURF) effect [6]. In this work, we demonstrate Ga2O3 trench-MIS SBDs with a record-high 1.5 kV breakdown voltage without edge termination, together with a ~104 times reduction in reverse leakage current compared with regular SBDs.
1.5 kV垂直Ga2O3沟槽- mis肖特基势垒二极管
$\beta-\mathrm{Ga}_{2}\mathrm{O}_{3}$ 近年来,用于高功率应用的电子器件得到了快速发展,这是由于优异的材料性能,包括极大的带隙,高临界电场,良好的电子迁移率和低成本的大块基板的可用性。作为单极器件,Ga2O3垂直肖特基势垒二极管(sdd)在具有Ga2O3优越性能的同时,具有快速开关能力。随着卤化物气相外延(HVPE)的发展,能够提供高质量的厚n外延层[1],$\mathrm{Ga}_{2}\mathrm{O}_{3}$垂直sdd已经显示出有希望的结果,击穿电压(BV)高达1kv,导通电阻$(\mathrm{R}_{\mathrm{on}})$为$2-6\ \mathrm{m}\Omega\cdot \mathrm{cm}^{2}\ [1-3]$。然而,这一结果与预期的性能相比仍有很大的差距,即超越GaN和SiC[4]。一个重要的原因是由于高表面电场导致的高反漏电流,导致热场发射和势垒高度降低,特别是在器件边缘发生场拥挤的地方。采用边缘终止技术,如场镀[3],可以大大降低泄漏电流。更有效的是,可利用沟槽-金属-绝缘体-半导体(MIS)结构,利用表面场减小效应(RESURF)来减小泄漏电流。在这项工作中,我们展示了Ga2O3沟槽- mis sbd,具有创纪录的1.5 kV击穿电压,无边缘终止,同时与常规sbd相比,反向泄漏电流降低了104倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信